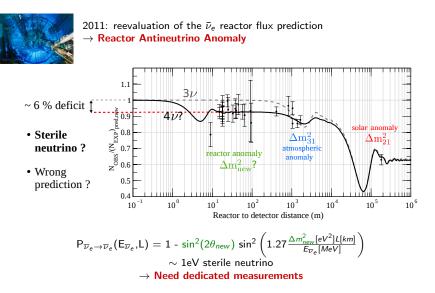
The STEREO experiment, a search for sterile neutrino at ILL

Aurélie Bonhomme IRFU, CEA-Saclay

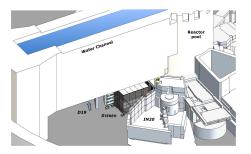
on behalf of the $\ensuremath{\operatorname{STEREO}}$ collaboration


GDR Neutrino - 12th of june 2018

Motivation

The Reactor Antineutrino Anomaly (RAA)

Phys.Rev.D83:073006 (2011)

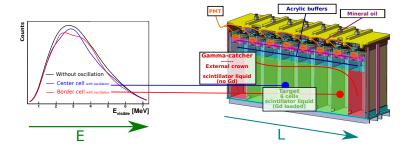


Experimental site


ILL research facility, Grenoble, France

- $\begin{array}{l} \text{Research reactor core} \sim 50 \, \text{MW}_{th} \\ \rightarrow 10^{19} \, \, \bar{\nu}_e \, \, s^{-1} \end{array}$
- ✓ Compact core (40cm Ø)
- ✓ Highly 235 U enriched
- \checkmark Short baseline measurement: $8.9m < L_{core} < 11.1m$

Water channel 15 mwe overburden

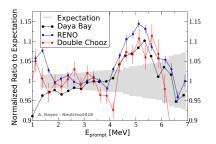

- Surface-level experiment
- γ and neutron background from neighboring experiments

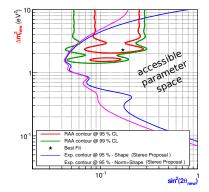
The STEREO experiment

arXiv:1804.09052 (2018)

Designed to probe the Reactor Antineutrino Anomaly region

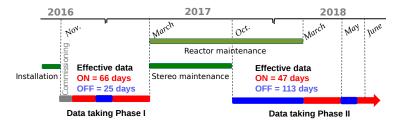
- ✓ Segmented target filled with Gd-doped liquid scintillator
- ✓ Gamma-catcher as active shielding
- \checkmark Oscillation hypothesis test: measuring relative distortions of the $\bar{\nu}_e$ energy spectrum


The $\ensuremath{\operatorname{STEREO}}$ experiment


arXiv:1804.09052 (2018)

Designed to probe the Reactor Antineutrino Anomaly region

- Designed to probe the RAA region
- First approach: relative distortions → independent from predicted energy spectrum (norm. + shape)



► Measurement of a pure ²³⁵U v_e energy spectrum

Data taking STEREO is running since nov. 2016

Phase-I:

- Loss of optical coupling between PMTs and target for one target and on GC cell
- Evolving light cross-talks between cells

ightarrow repaired during summer 2017

Phase-II:

Stable conditions

Physics runs: $\sim 95\%$ of data taking time

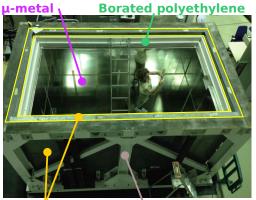
arXiv:1804.09052 (2018)

Detector response

- Monitoring of liquids/electronics: Automatic daily LED measurement: PMT gain, liquid stability, electronics linearity
- Monitoring of the energy response: On a weekly basis: internal and external calibrations using radioactive sources
- Monitoring of the neutron capture: Using dedicated AmBe source

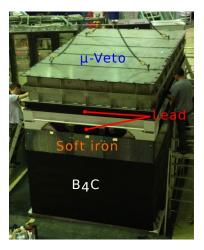
Tuning of the MC simulation of the detector: optical surfaces, liquid properties

	Cell-to-cell correlated	Uncorrelated
Energy scale σ_j^{Escale} Normalization σ_i^{Norm}	0.35 %	1.10 %
Normalization σ_j^{Norm}	-	1.70%


 \rightarrow Details in this afternoon session (16:40): Energy calibration in the STEREO experiment - V. Sergeyeva (LAPP)

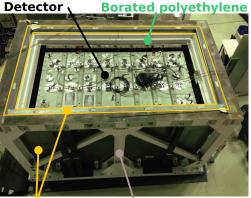
Results Shieldings

Shielding against background


Passive and active shieldings

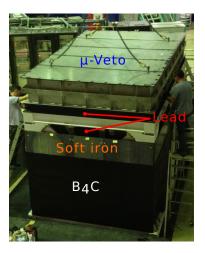
Lead

Support structure

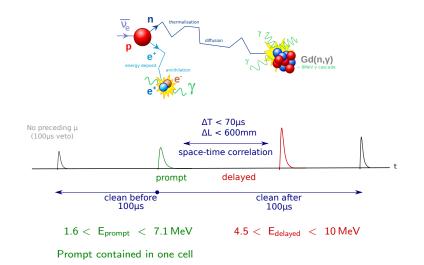


Results Shieldings

Shielding against background

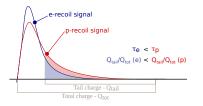

Passive and active shieldings

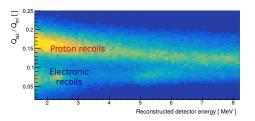
Lead


Support structure

 $\bar{\nu}_e$ signal selection

$\bar{\nu}_e$ signal selection




Correlated background

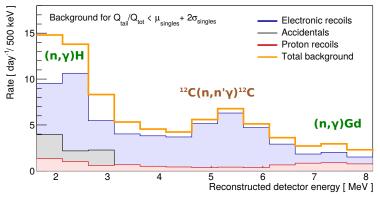
Pulse Shape Discrimination

Pulse Shape Discrimination for prompt signal

Neutron induced reactions:

- Fast neutrons
 Prompt: n_{fast} recoil
- Multiple neutron captures
 Prompt: 2.2 MeV γ or a 8 MeV γ
 cascade from n-cap
- ¹²C(n,n'γ)¹²C reactions
 Prompt: mixing between 4.4 MeV γ and n_{fast} recoil

(Delayed are Gd capture)

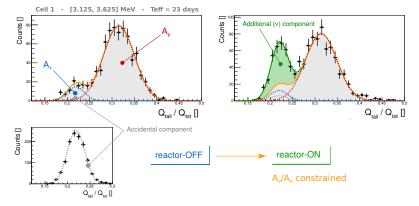

Stopping muons:

Prompt: μ stop Delayed: Michel e^{+/-} Asymmetry based rejection

Reactor-OFF prompt energy spectrum in the region of interest

Results

 ${<}S/B{>}\sim0.9$


$\bar{\nu}_e$ signal selection

Results

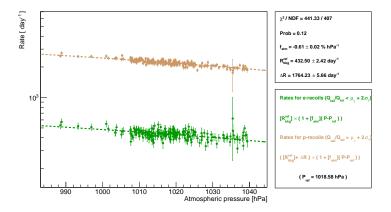
$\bar{\nu}_e \text{ signal selection}$ Extraction of the $\bar{\nu}_e$ rates from PSD distributions

Multi-Gaussian background model for each cell/energy/time bin PSD:

Self-consistent method to estimate background under $\bar{\nu}_e$ component:

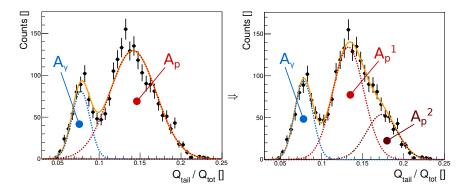
- Adapt to PSD variations (temperature sensitivity)
- Local rescaling to global norm (pressure sensitivity)

$\bar{\nu}_e$ signal selection


$\bar{\nu}_e$ signal selection

Extraction of the $\bar{\nu}_e$ rates from PSD distributions

- A_{γ}/A_{p} compatible with a constant in all cell/energy bin
- Same correlation with atmospheric pressure for e-recoils rates and p-recoils rates


Results

$\bar{\nu}_e$ signal selection Extraction of the $\bar{\nu}_e$ rates from PSD distributions

Phase-II: 84 days (effective time) with stable conditions \rightarrow Updated background model with increased statistics

Second component for p-recoils, anchored **relatively** to the first one Possible physical origin: multiple proton recoils (under study)

Relative comparison of energy distributions

Oscillation test using ratio of energy distributions - cell 1 taken as reference

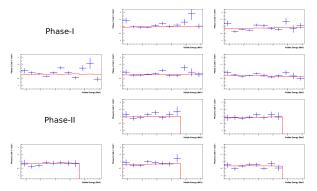
- Reduced systematics
- Unsensitive to absolute flux normalization
- Unsensitive to spectrum shape

 $R_{i,j}^{\text{Data}} = \frac{\text{Data}_{i,j}}{\text{Data}_{i,ref=1}} \quad \text{compared with} \quad R_{i,j}^{\text{MC}} = \frac{\text{MC}_{i,j}}{\text{MC}_{i,ref=1}}$

MC takes into account cells differences, detection efficiencies etc.

$$\chi^{2} = \sum_{i=1}^{N_{\text{Ebins}}} \left(\overline{R_{i}^{\text{Data}}} - \overline{R_{i}^{\text{MC}}}(\alpha) \right)^{t} V_{i}^{-1} \left(\overline{R_{i}^{\text{Data}}} - \overline{R_{i}^{\text{MC}}}(\alpha) \right) + \sum_{j=1}^{N_{\text{Cells}}} \left(\frac{\alpha_{j}^{\text{Norm}}}{\sigma_{j}^{\text{Norm}}} \right)^{2} + \sum_{j=0}^{N_{\text{Cells}}} \left(\frac{\alpha_{j}^{\text{Escale}}}{\sigma_{j}^{\text{Escale}}} \right)^{2}$$

 V_i is the covariance matrix of the 5 ratios (common reference for each cell) for the energy bin i $\{\alpha\}$ are pull-terms to take into account estimated systematics



arXiv:1806.02096 (2018)

Ratio method

Ratio method Non-oscillation hypothesis

Ratio method: cell 1 taken as reference

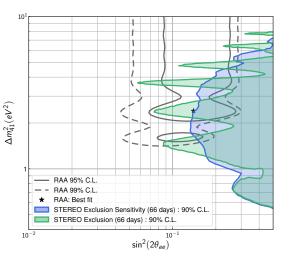
- Measured ratios
- Non-oscillation prediction

- Minimized pull terms stay within ±1 σ
- Non-oscillation hypothesis (H₀) not rejected:

p-value = 34 % (40 %) for phase-I (phase-I+II)

Measured ratios for the cells from 2 to 6 (blue) compared to the null oscillation hypothesis model (red)

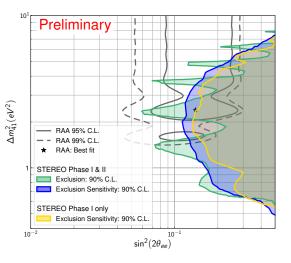
Ratio method


Ratio method

arXiv:1806.02096 (2018)

- ► Phase-I results 66 days reactor(ON) 396 ± 4 v

 _e day⁻¹
- Raster-scan method
 Δχ² distributions estimated
 by MC pseudo experiments
- Best-fit value of the RAA rejected at 97.5 % C.L.



Ratio method

Ratio method

- Phase-I + Phase-II combined results (66+47) days reactor-ON
- ► Considered as two independent measurements: $\chi^2_{l} = \chi^2_{l}(\overrightarrow{\alpha_{l}}) + \chi^2_{ll}(\overrightarrow{\alpha_{ll}})$ $\overrightarrow{\alpha_{l}} \neq \overrightarrow{\alpha_{ll}}$
- Best-fit value of the RAA rejected at 98 % C.L.

Conclusions and perspectives

- STEREO
- STEREO is now running under very stable conditions
 Data taking will continue until end 2019, reaching 300 days of reactor-ON data
- The correlated background understanding improves using reactor-OFF periods
- Exclusion contour obtained using the robust ratio method arXiv:1806.02096 (2018)
- ► Improved results are coming soon, with a pure ²³⁵U spectrum

Thanks for your attention !