

First CUPID-0 results

L.Pattavina

luca.pattavina@gssi.it

Gran Sasso Science Institute Technical University of Munich

Technische Universität München

GDR Neutrino meeting June 11-12 2018

GS SI

Outline

- 0vββ physics
- The cryogenic calorimetric technique
- CUPID-0
 - Detector design and construction
 - Detector performance
- Results

Double-beta decay

- One of the rarest <u>observed</u> nuclear decay is $\underline{2\nu\beta\beta}: (A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}$

2nd order transition

 \mathbf{M} even-even nuclei where the β-decay is suppressed \mathbf{M} Half-lives of the order of 10²¹ y

- If neutrino are massive Majorana particle, <u> $0\nu\beta\beta$ </u> may occur: $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Neutrino Majorana nature \Box Lepton number violation $\Delta L=2$ \Box Infos on neutrino: mass & hierarchy

Effective Majorana mass $m_{\beta\beta} = \left| \Sigma_i \, U_{ei}^2 \, m_i \right|$

- By measuring the half-life of the decay:

$$(t_{1/2}^{0\nu})^{-1} = |\mathcal{M}_{0\nu}^2| \cdot G_{0\nu} \cdot m_{\beta\beta}^2$$

Nuclear Matrix element

Phase space

Expected signal & bkg

- Signature: peak at the sum-energy (Q) of the two electrons (2-3 MeV).

Energy spectrum from natural radioactivity

- Most of the β/γ events extends up to 2.6 MeV

- α events extends up to 8 MeV

High $0v\beta\beta$ Q-value \rightarrow low β/γ background

Zero-bkg -> sensitivity scales linearly with exposure

Neutrino mass sensitivity

Current limit on neutrino mass are set at the level of ~100 meV To probe lower mass region higher sensitivity is needed: 1 mass and 1 background

$$(t_{1/2}^{0\nu})^{-1} = |\mathcal{M}_{0\nu}^2| \cdot G_{0\nu} \cdot m_{\beta\beta}^2$$

The main goal of next-generation experiment is to span the entire IH region of neutrino mass.

Today M~10-100 kg isotope B~10⁻² c/keV/kg/y

Tomorrow M~100-1000 kg isotope B~10⁻³ c/keV/kg/y

CUPID

Cuore Upgrade with Particle ID

III. SCIENTIFIC OBJECTIVE

CUPID is a proposed bolometric $0\nu\beta\beta$ experiment which aims at a sensitivity to the effective Majorana neutrino mass on the order of 10 meV, covering entirely the so-called inverted hierarchy region of the neutrino mass pattern. CUPID will be designed in such a way that, if the neutrino is a Majorana particle with an effective mass in or above the inverted hierarchy region (~ 15 - 50 meV), then CUPID will observe $0\nu\beta\beta$ with a sufficiently high confidence (significance of at least 3σ). This level of sensitivity corresponds to a $0\nu\beta\beta$ lifetime of $10^{27} - 10^{28}$ years, depending on the isotope. This primary objective poses a set of technical challenges: the sensitive detector mass must be in the range of several hundred kg to a ton of the isotope, and the background must be close to zero at the ton × year exposure scale in the ROI of a few keV around $0\nu\beta\beta$ transition energy. <u>http://arxiv.org/abs/1504.03599</u>

Five steps beyond the present technology are required:

- Isotopic enrichment
- Active bkg rejection
- Improved material selection
- Better energy resolution
 - Reduced cosmo-activation

* * CUPID-0

The underground facility

OPERA CRESST we are XENON GERDA CUORE here DarkSide LVD Borexino DAMA **ICARUS** Rome Adriatic CERN coast 4Δ1 I F

Experimental location:

- Average depth ~ 3600 m w.e.
- Muon flux ~ 2.6×10⁻⁸ μ /s/cm²
- Neutrons < 10 MeV: <10⁻⁶ n/s/cm²

CUORE: unique infrastructure for low background physics with bolometers

- 1 m³ detector @ 10 mK
- 10 ton shields @ 10 mK

Scintillating bolometers

A bolometer is a highly sensitive **calorimeter** operated @ cryogenic temperature (~10 mK).

Energy deposits are measured as temperature variations of the absorber.

If the absorber is also an **efficient scintillator** the energy is converted into **heat** + **light**

Nuclear recoils

Heat Signal

The simultaneous

read-out of **HEAT**

and **LIGHT** allows

particle

identification

Bolometer features:

- ▶ high energy resolution O(1/1000)
- ▶ wide choice of compound ¹³⁰TeO₂, Zn/Li₂¹⁰⁰MoO₄, Zn⁸²Se
- high detection efficiency (source = detector)

scalable to large masses

▶ particle ID

A **background-free experiment** is possible: **α-background**: identification and rejection β/γ-background: ββ isotope with large Q-value

Light Signal

a partic

CUPID-0

CUPID-0 is the first array of scintillating bolometers for the investigation of ⁸²Se 0vββ

- ⁸²Se Q-value 2998 keV
- 95% enriched Zn⁸²Se bolometers
- 26 bolometers (24 enr + 2 nat) arranged in 5 towers
 - 10.5 kg of ZnSe
 - 5.17 kg of ${}^{82}Se \rightarrow N_{\beta\beta} = 3.8 \times 10^{25} \beta\beta$ nuclei
- LD: Ge wafer operated as bolometer
- Simplest modular detector → scale up
 - Copper structure (ElectroToughPitch)
 - PTFE holders
 - Light Reflector (VIKUITI 3M)

30 cm

9

CUPID-0

CUPID-0 is the first array of scintillating bolometers for the investigation of ^{82}Se 0vBB

- ⁸²Se Q-value 2998 keV
- 95% enriched Zn⁸²Se bolometers
- 26 bolometers (24 enr + 2 nat) arranged in 5 towers
 - 10.5 kg of ZnSe
 - 5.17 kg of ⁸²Se -> $N_{\beta\beta}$ = 3.8x10²⁵ $\beta\beta$ nuclei
- LD: Ge wafer operated as bolometer
- Simplest modular detector → scale up
 - Copper structure (ElectroToughPitch)
 - PTFE holders
 - Light Reflector (VIKUITI 3M)

This design has the main goal of Minimize mass of passive materials Cu ~22% - PTFE/Vik. ~0.1% - ZnSe+Ge ~78%

LD for a background rejection

11

• Well established technology for bolometric LDs

	PMT	Bolometer
Quantum efficiency	×	~
Energy resolution efficiency	×	v
Intrinsic radiopurity	×	v
Work @ low T	×	~
Energy threshold	~	×

- LD: Ge wafer + SiO coating (60 nm) + Ge-NTD
- LD performance are crucial for background suppression
 - Light vs Heat: possible α leakage in β/γ ROI
 - Pulse Shape Analysis of Light: efficient particle-ID

CUPID-0 operates 31 LDs

LD for a background rejection

Well established technology for bolometric LDs

	PMT	Bolometer
Quantum efficiency	×	~
Energy resolution efficiency	×	~
Intrinsic radiopurity	×	
Work @ low T	×	~
Energy threshold	~	×

- LD: Ge wafer + SiO coating (60 nm) + Ge-NTD
- LD performance are crucial for background suppression

CUPID-0 assembly

Complex detector design: CUPID-0 crystals have all different shapes and heights ranging from 21 mm to 58 mm.

Assembly started in Oct-2016

#1 LD installation

#2 ZnSe installation

#3 LD installation

13

CUPID-0 assembly

Complex detector design: CUPID-0 crystals have all different shapes and heights ranging from 21 mm to 58 mm.

Assembly started in Oct-2016

#4 Tower completed

#3 LD installation

Detector installation

Detector installed in the former CUORICINO/CUORE-0 cryostat (80's).

Upgrades:

Double stage pendulum for low vibrational noise

✓ Improve LD performance

Cryostat wiring: can host up to 120 channels
 CUPID-0 uses more than 60 channels
 CUPID-0/Mo next phase can be hosted

Data taking

Background data presented here were collected between Jun-Dec 2017 Exposure: 3.44 kg · y of ZnSe (1.83 kg · y ⁸²Se)

CUPID-0 Coll., Phys. Rev. Lett. 120, 232502 (2018)

Detector performance

Total ²³²Th calibration energy spectrum

Threshold is channel dependent and ranges between 10 and 110 keV

Response function

Total Background run

- ✓ We linearly extrapolate the width of the primary peak at $Q_{\beta\beta}$.
- ✓ The exposure-weighted harmonic mean FWHM energy resolution at the Q_{ββ} results to be (23.0±0.6) keV
 - ✓ Validated with a dedicated ⁵⁶Co calibration

- ✓ Simplest model which well reproduces the detector response function over the entire spectrum
- ✓ Deviations from the single gaussian model already observed in other bolometric experiments

First level data analysis:

- Optimum filtering
- Gain stability corrections
- Synchronisation heat-light

Rejection of "non-particle" events via PSA Anti-coincidence cut Δ =20 msec

Background energy spectrum

Continuum energy spectrum: (9.2±0.7)·10¹⁹ y

Delayed alpha coincidence ²¹²Bi-²⁰⁸Tl rejection

²¹²Bi α event are selected in a range of (2.5-6)MeV

For each ²¹²Bi α event the detector is disabled for 3τ (~9min).

Rejection of high energy γ from ²⁰⁸TI.

All cuts efficiency 93±2%

24

Data Selection:

Anti-coincidence between ZnSe: → BI: (3.7±0.5)*10⁻² c/keV/kg/y

α particles rejection:
→ BI: (1.5±0.3)*10⁻² c/keV/kg/y

→ BI: (3.6±1.6)*10⁻³ c/keV/kg/y
 → only 5 events in Rol

LOWEST BKG ACHIEVED WITH A BOLOMETRIC DETECTOR

UEML SIMULTANEOUS FIT OVER THE DATASETS

 $3.6^{+1.9}_{-1.4} \times 10^{-3} \text{ counts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$

(1.5±0.3) x 10⁻³ counts/(keV kg yr) from muons (PRELIMINARY MC simulation)

No evidence of 0vββ → T^{0v} > 2.4 · 10²⁴ yr @ 90C.L. $m_{\beta\beta} < (376-770) \text{ meV}$

Previous measurement 3.6 · 10²³ yr @ 90C.L.

A. S. Barabash and V. B. Brudanin, NEMO, Phys. Atom. Nucl. 74, 312 (2011),

Conclusions

- The first next generation $0\nu\beta\beta$ demonstrator is smoothly taking data.
- The complete α-background rejection was demonstrated and allows to reach an unprecedented BKG level for a bolometric experiment

 $3.6^{+1.9}_{-1.4} \times 10^{-3} \text{ counts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$

 The analysis of the first data (3.44 kg y of ZnSe) allows to set the best limit on ⁸²Se 0vββ half-life

 $T_{1/2}^{0\nu} = 2.4 \times 10^{24} \text{ yr} @ 90\% \text{ C.I.}$ m_{\beta\beta\beta} (376-770) meV}

- We plan to reach an exposure of 10 kg y of ZnSe in order to obtain a reliable background model
- The scintillating bolometric technique is suitable for investigating the v IH region

O. Azzolini et al. (CUPID-0), Phys. Rev. Lett. 120, 232502 (2018)