GDR Neutrino 2018 - Paris, 11-12 June

Atmospheric Neutrino Oscillations with ANTARES

Status & Prospects for KM3NeT/ORCA

Ilenia Salvadori
(on behalf of the ANTARES & KM3NeT collaborations)

Outline

- The ANTARES neutrino telescope;
- Neutrino Oscillations with ANTARES;
- Sterile neutrino constraints with ANTARES;
- KM3NeT: the new generation of neutrino telescopes in the Mediterranean Sea;
- KM3NeT/ORCA.

The ANTARES neutrino telescope

The ANTARES neutrino telescope

- Optimized for detection of high energy neutrinos;
- Searches for (extra-)galactic sources;
- Multimessenger astronomy.

- Low energy threshold
 ~ 20 GeV;
- First oscillation minimum for vertically up-going ν_{μ} is detectable;
- Neutrino oscillation studies are possible!

- Previous analysis done in 2012;
- 3 years of ANTARES data;
- Simplified systematic treatment;
- 1-dim χ^2 fit in E/L.

- Much more data are available now;
- Refinements in the analysis chain are possible;
- A new analysis has been done!

- 2830 days of lifetime (2007-2016);
- Track channel only;
- 2 track reconstructions combined;
- E_{reco} estimated from muon range;
- 7710 selected events;
- 2-dim fit in $\log_{10} E_{reco}$ and $\cos \theta_{reco}$;
- Log-likelihood approach.

- Free normalization for neutrinos;
- Spectral index correction;
- Flux ratio uncertainty (from Barr et al. and parametrized by IceCube);
- Cross-section systematic (calculated with GENIE);
- Atmospheric muon bkg extrapolated from data and fitted with a prior;
- MC sensitivity study done to optimize the analysis chain.

Results at 90% CL

Results at 90% CL

- Best fit for θ_{23} found compatible with maximal mixing;
- $\Delta m_{32}^2 = 2.0 \times 10^{-3} \text{ eV}^2$;
- Non-oscillation hypothesis discarded at 4.6σ (vs 2.2σ of previous analysis).

Sterile neutrino constraints with ANTARES

- Sterile neutrinos have been hypothesized and could explain some observed anomalies;
- A ν_s would modify the standard oscillation probability;
- At $E_{\nu} \sim$ 20-30 GeV the effect is regulated by θ_{24} and θ_{34} ;
- The same data set as for the oscillation analysis can be used to constraint these parameters.

Sterile neutrino constraints with ANTARES

Results at 99% CL

- Δm_{32}^2 and θ_{23} are treated with a prior;
- Atmospheric muon contamination is fixed at the the BF found in the oscillation analysis;
- Other systematic are treated as in the oscillation analysis;
- One of the sterile phase (δ_{24}) is fitted.

KM3NeT: the new generation of neutrino telescopes in the Mediterranean Sea

- 15 Countries;
- >40 Institutions;
- >220 Scientists.

KM3NeT: the new generation of neutrino telescopes in the Mediterranean Sea

Single...

- Collaboration;
- Technology;
- Management

Multiple...

- Sites (France, Italy, Greece);
- Purposes
- ORCA: low-energy studies (ν mass hierarchy, oscillations, SN)
- ARCA: high-energy studies (origin of cosmic neutrinos).

KM3NeT: the new generation of neutrino telescopes in the Mediterranean Sea

	ORCA	ARCA
STRINGS	115	2×115
DOMs/STRING	18	18
PMTs/DOM	31	31
STRING SPACING	23 m	90 m
DOMs SPACING	9 m	36 m
DEPTH	2470 m	3500 m
INSTRUMENTED MASS	8 Mton	$0.6 \times 2 \text{Gton}$

KM3NeT/ORCA - Effective Mass

- After trigger, atmospheric μ rejection and soft containment cuts;
- Energy threshold determined by DOMs spacing;
- o 8 Mton @10 GeV for ν_{μ} CC;
- 50% efficiency at 5 GeV

KM3NeT/ORCA - Angular and Energy Resolutions

- Median angular error < 5° @ 10 GeV;
- Energy resolution better than 30% in relevant range;
- The shape is close to Gaussian.

KM3NeT/ORCA - Shower/Track Identification

- Discrimination based on Random Decision Forest;
- o 90% corrected identification of ν_e CC @10 GeV;
- o 70% corrected identification of ν_{μ} CC @10 GeV.

KM3NeT/ORCA - Neutrino Oscillations

- After 3 years of data taking;
- 90% CL contours;
- Expected 5% error in θ_{23} and 2% in Δm_{32}^2 .

KM3NeT/ORCA - Neutrino Mass Hierarchy

- After 3 years of data taking;
- Two methods tested: Asimov approach and LLR;
- $\circ > 3\sigma$ for the most optimistic scenario (NO, $\theta_{23} > 45^{\circ}$).

KM3NeT/ORCA - ν_{τ} APPEARANCE

- $\sim 3000 \ \nu_{\tau}$ CC events/year detected;
- Rate constrained within 10% after 1 year.

KM3NeT/ORCA - Super Novae Detection

- Look for an excess of coincidence signals on individual OMs;
- >80% of galactic SN with single building block.

KM3NeT/ORCA - Dark Matter

- After 3 years of ORCA data;
- Combining tracks and showers;
- Competitive for spin-dependent coupling.

- Construction has started;
- The first line has been deployed in 2017;
- Several new lines are expected to be deployed after summer.

IPHC-Strasbourg

- 2 dedicated sites in France for DOMs production;
- First French KM3NeT DOMs produced.

Very good data/MC agreement from first data/MC comparisons!

	$\cos \theta > 0$	$\cos \theta > 0.5$
DATA	13	10
MC ATM μ	1	0
MC $ u$	8.33	7.36
MC $ u_{\mu}$	5.44	4.89
MC $ u_e$	1.36	1.17
MC $ u_{ au}$	0.96	0.83
MC ν_{NC}	0.57	0.47

First analysis made with 82 days of data taking with 1 string of ORCA;

KM3NeT/ORCA - Summary

- First ORCA line successfully deployed;
- First data allowed to test MC and showed a good agreement;
- First neutrino analysis has been performed;
- Large scientific program will be covered;
- Several new lines expected after summer.

Stay tuned!

Thank you for your attention!

Workshop on supernova neutrino detection

IPN Orsay – July 4 and 5, 2018

 $https://indico.in2p3.fr/event/17490/timetable/\\ (part of a longer program on GRBs and CCSNs taking place in Orsay in June/July)$

registration: coleiro@apc.univ-paris7.fr

KM3NeT/ORCA - Neutrino Mass Hierarchy

Example distribution of LLR

KM3NeT/ORCA - Super Novae Detection

Expected sensitivity as a function of SN distance for ARCA+ORCA combined.