

GDR Neutrino, June 2018

Luis MANZANILLAS

manzanillas@lal.in2p3.fr

LAL-IN2P3-CNRS

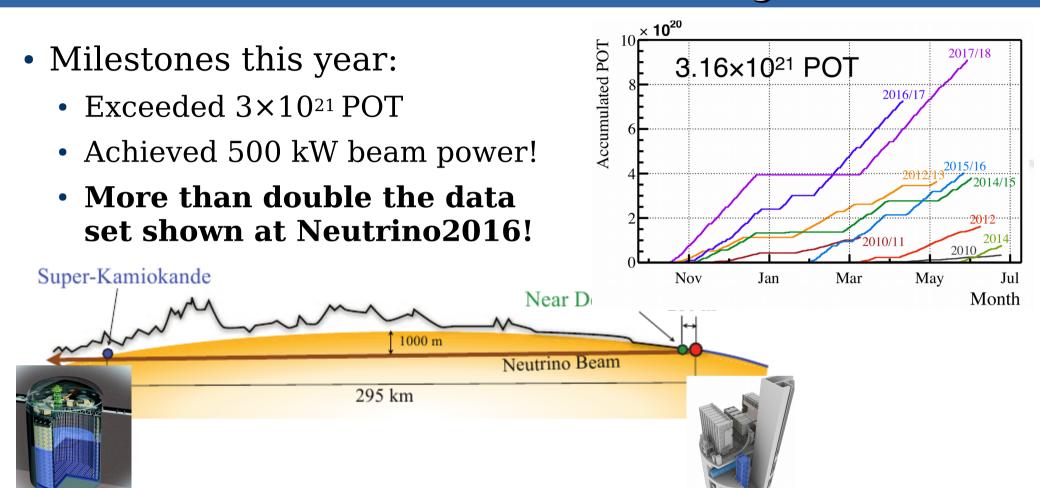
Highlights

Luis MANZANILLAS

manzanillas@lal.in2p3.fr

LAL-IN2P3-CNRS

Outline


- The 3 ν paradigm
 - Accelerator neutrinos
 - Solar Neutrinos
 - Reactor/atmospheric neutrinos
- Sterile neutrinos
- Double beta decay
- Neutrino astronomy
- Coherent neutrino scattering
- Neutrino mass determination

Disclaimer: Probably biased ($\sim 3 \sigma$) and certainly incomplete ($> 5 \sigma$)

•Accelerator neutrinos

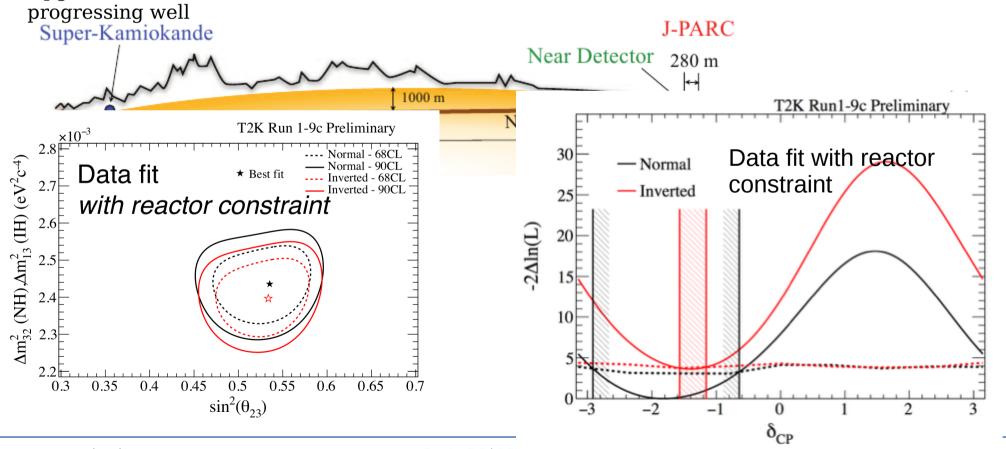
Morgan Wascko

5

What is the value of δ ? What is the mass hierarchy?

T2K

Morgan Wascko


- Analysed 1.49×10 21 POT in FHC and 1.12×10 21 POT in RHC:
 - CP conserving values of δ CP lie outside 2σ region.
 - Data show preference for Normal Hierarchy,

Upgrades to beam, near and far detectors

- Bayes factor for NH/IH is 7.9.
- Analysis of full data set to be released late summer 2018.

	sin²θ ₂₃ ≤0.5	$\sin^2\theta_{23} > 0.5$	SUM
NH (Δm ² ₃₂ >0)	0.204	0.684	0.888
IH (Δm ² ₃₁ <0)	0.023	0.089	0.112
SUM	0.227	0.773	1

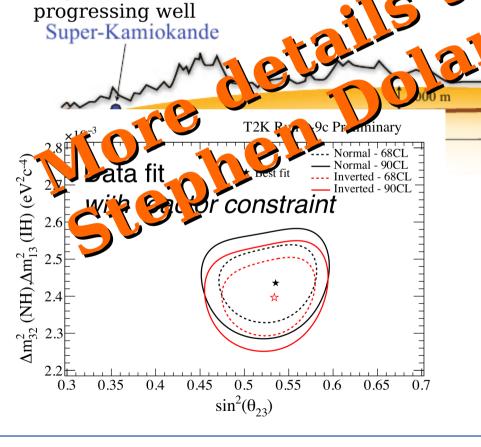
6

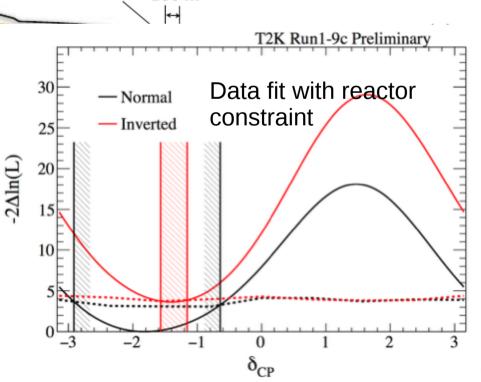
T2K

Morgan Wascko

 Analysed 1.49×10 21 POT in FHC and 1.12×10 21 POT in RHC:

• CP conserving values of δ CP lie outside 2σ region.


• Data show **preference** for **Normal Hierarchy**,

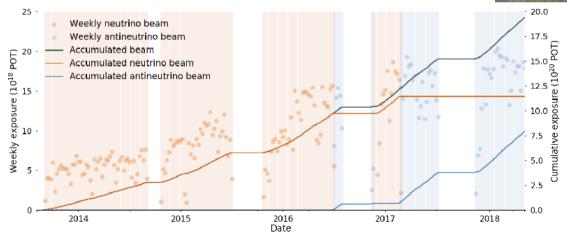

Upgrades to beam, near and far detectors.

• Bayes factor for NH/IH is 7.9.

 Analysis of full data set to be released late summer 2018.

 $\sin^2\theta_{23} > 0.5$ SUM 0.204 0.684 0.888 \H ,∆m²₃₁<0) 0.023 0.089 0.112 0.227 0.773 1

J-PARC

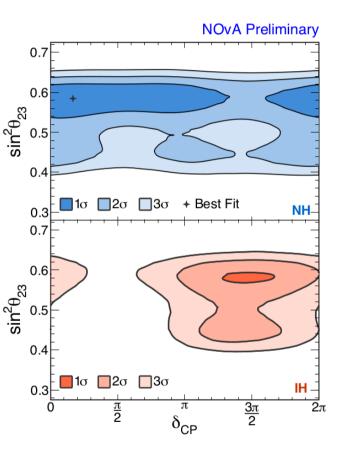

280 m

Near Detector

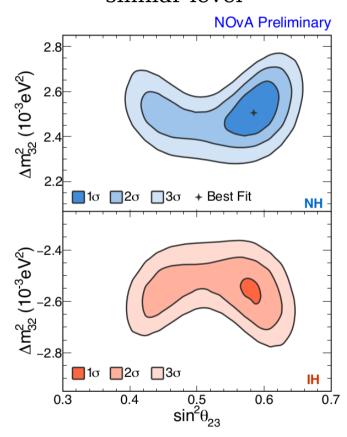
Nova

Mayly Sanchez

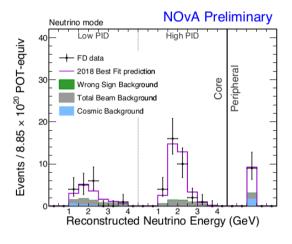
- What is the mass ordering for atmospheric neutrinos?
- Is there a ν_{μ} ν_{τ} symmetry (is the
- large mixing angle 2 maximal; if not, what is the octant)?
- Is CP violated in the lepton sector?
- Are there other neutrinos beyond of the three known active flavors?

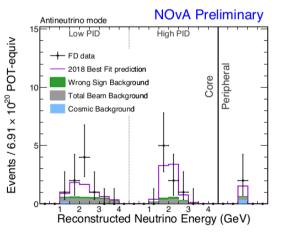


- NuMI beam running at 700 kW design power since January 2017.
- (> 18 x 10 18 protons per week). Highest power neutrino beam in the World!
- Recorded neutrino-mode running 8.85 x 10^{20} protons on target (POT) in 14 kton
- equivalent detector taken from February 2014 to February 2017.
- First antineutrino-mode running recorded between February 2017 to April 2018 resulting in 6.9 x 10^{20} POT.


Nova results

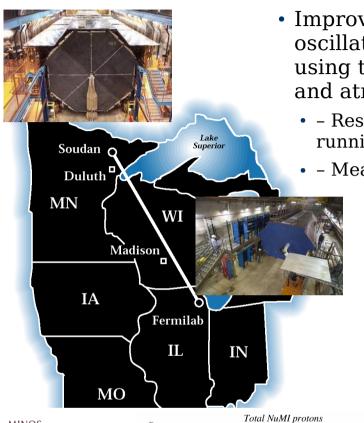
Mayly Sanchez


- Prefer NH by 1.8 σ
- Exclude $\delta = \pi / 2$ in the IH at $> 3 \sigma$

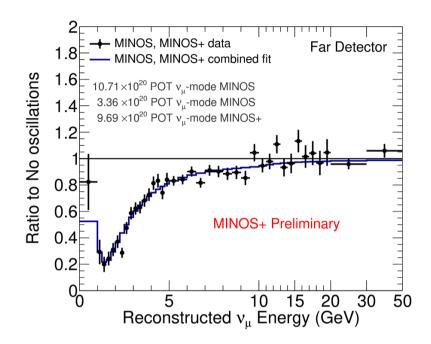


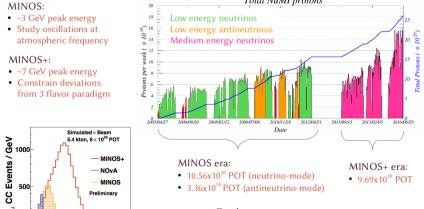
- Prefer nonmaximal at 1.8 σ
- Exclude LO at similar level

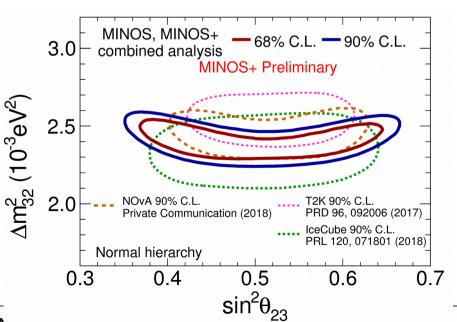
• > 4 σ evidence of electron antineutrino appearance



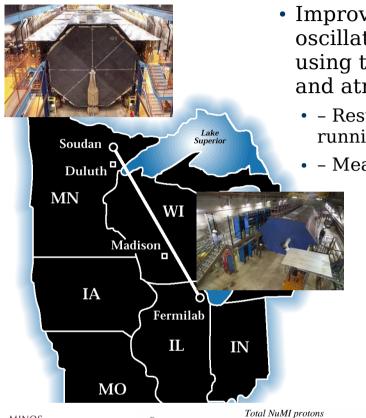
Future NOvA running can reach 3 σ sensitivity for the mass hierarchy by 2020 and covers significant CP range by 2024


Minos+

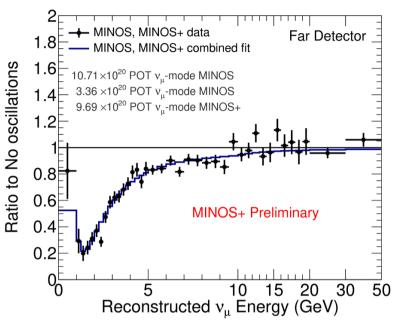

Adam Aurisano


 Improved its standard oscillation measurement using the full sample of beam and atmospheric neutrinos

- Results are competitive with running experiments
- - Measured Δm_{32}^2 to 3.5%



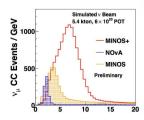
• ~25x10²⁰ POT in 11 years of running

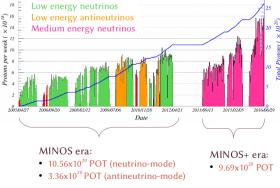

Minos+

Adam Aurisano

 Improved its standard oscillation measurement using the full sample of beam and atmospheric neutrinos

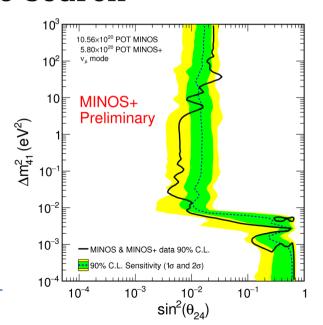
- - Results are competitive with running experiments
- - Measured Δm_{32}^2 to 3.5%


Sterile neutrino search


MINOS:

- ~3 GeV peak energy
- · Study oscillations at atmospheric frequency

MINOS+:


- ~7 GeV peak energy
- · Constrain deviations from 3 flavor paradigm

• ~25x10²⁰ POT in 11 years of running

- MINOS+ sets strong limits on sterile neutrino in the critical $1 - 10 \text{ eV}^2$ region
- For some people it looks too good
 - \rightarrow Possible problem with systematic uncertainties $(\sim 3\%)$ which seems to be underestimated

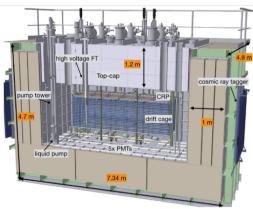
•The future is bigger

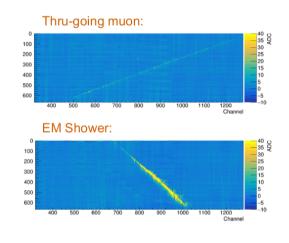
DUNE

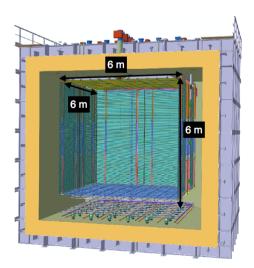
- Observe ν e appearance and ν μ disappearance at long baseline in wideband beam to measure MH, CPV, and neutrino mixing parameters in a single experiment.
- · Deep underground location reduces cosmogenic background and enables sensitivity to low-energy physics.

DUNE prototypes

Single phase

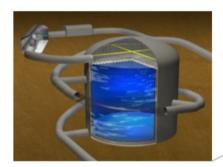

- Allows testing of assembled APA and electronics immediately before installation into protoDUNE cryostat
- Incorporates feed-thru, cabling, and readout system identical to protoDUNE
- Filled with cold nitrogen gas for testing at "cool" temperature (~160 K)
- Successful demonstration of required noise levels at cryogenic temperature


Detector Support Structure (DSS) ProtoDUNE Status and Plans Single Phase Installation Complete: May 2018 Single Phase Cooldown: July 2018 Single Phase Beam: August-November 2018 Complete: Fall 2018


Dual phase

- Ran from June to November 2017
- Successful demonstration of dual phase LArTPC concept
- · Led to improved designs for protoDUNE dual phase

3x1x1 m³ prototype:



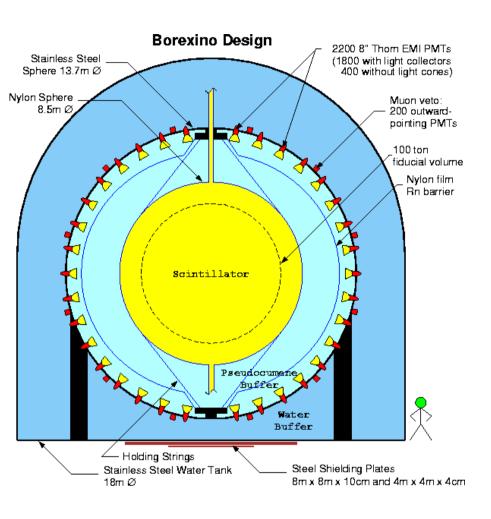
New MC-based oscillation sensitivity analysis exceeds CDR-level sensitivity to CP violation!

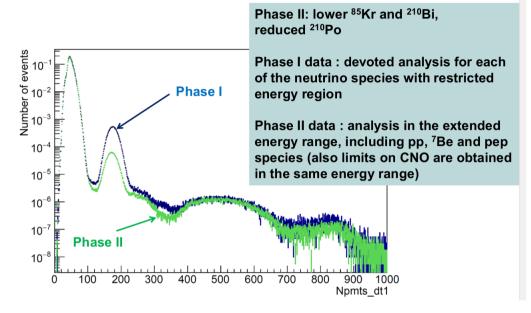
Expect first DUNE FD data in ~2024

Hyper-Kamiokande

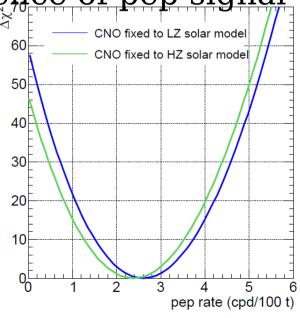
Hyper-K

J-PARC
Accelerator Complex

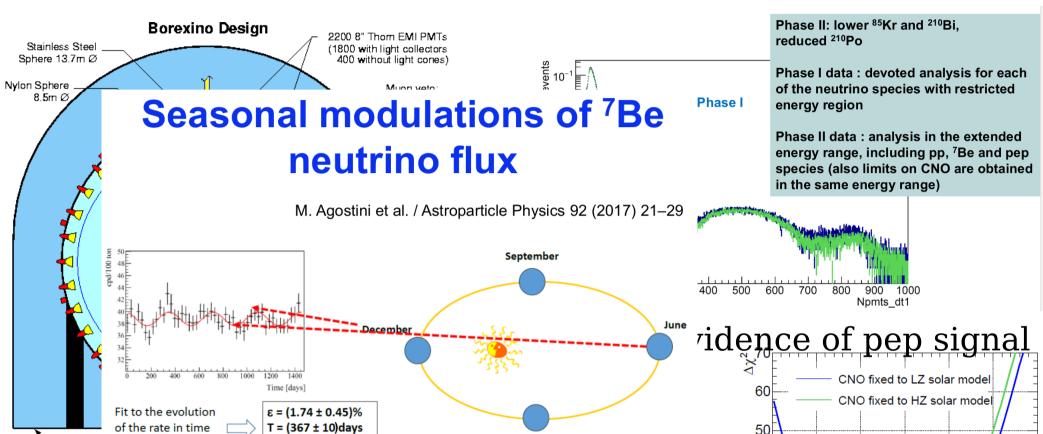



- Gigantic neutrino and nucleon decay detector ~ 186 kton fiducial mass : $\sim 10 \times \text{Super-K}$
 - ~× 2 higher photon sensitivity than Super-K
 - ~2nd oscillation maximum by 2nd tank in Korea under study
- \sim MW-class world-leading ν -beam by upgraded J-PARC
- Project now is a priority project by MEXT's Roadmap
 - Aiming to start construction in FY2019, operation in FY2026
- Design Report has been released (1805.04163)

•Solar neutrinos


Borexino

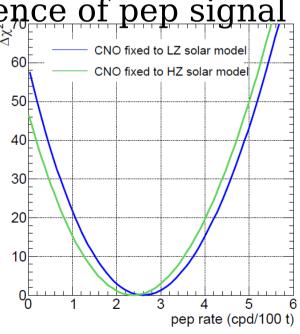
Oleg Smirnov



>5σ evidence of pep signal

Borexino

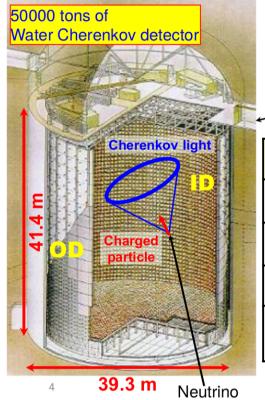
Oleg Smirnov

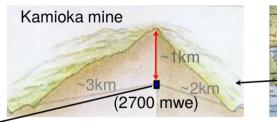

The duration of the astronomical year is measured from underground using neutrino!

 Φ = (-18 ± 24) days

On the record

(bin of 30 days)

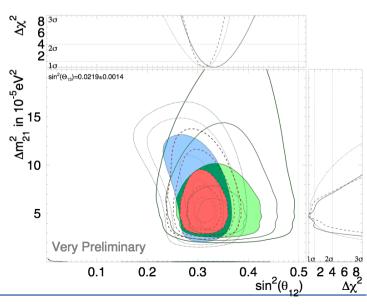

T Kisrten: "This old Borexino cow still gives good milk"



March

Super-Kamiokande

M. Ikeda

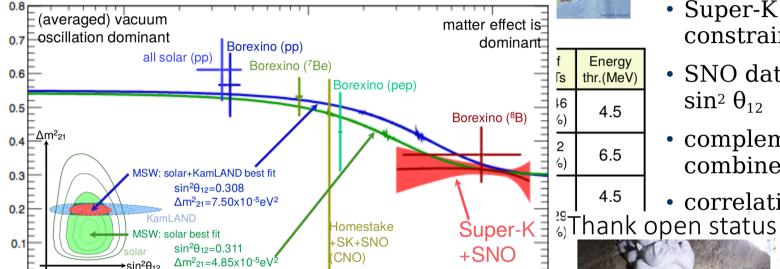


For Solar neutrino analysis

Phase	Period	Livetime (days)	Fiducial vol. (kton)	# of PMTs	Energy thr.(MeV)
SK-I	1996.4 ~ 2001.7	1496	22.5	11146 (40%)	4.5
SK-II	2002.10 ~ 2005.10	791		5182 (20%)	6.5
SK-III	2006.7 ~ 2008.8	548	22.5 (>5.5MeV) 13.3 (<5.5MeV)	11129	4.5
SK-IV	2008.9 ~	2860	22.5 (>5.5MeV) 13.3 (4.5 <e<5.5) 8.8 (<4.5MeV)</e<5.5) 	(40%)	3.5
				(coverage	(Kinetic

total 5695 days (coverage) (Kinetic energy)

- finalizing SK-IV analysis using all data up to May 2018
- Super-K data best constrains Δm_{21}^2
- SNO data best constrains $\sin^2 \theta_{12}$
- complementarity makes combined fit beneficial
- correlation via ⁸B flux further tightens constraints



Super-Kamiokande

M. Ikeda

Survival probabilities from all solar v results 🛂

"Upturn" predicted by standard MSW is not seen yet.

- Finalizing SK-IV analysis using all data up to May 2018
- Super-K data best constrains Δm_{21}^2
- SNO data best constrains $\sin^2 \theta_{12}$
- complementarity makes combined fit beneficial

• correlation via 8B flux

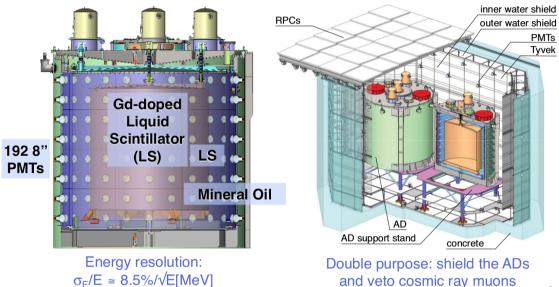
SK-Gd

 Gd has large cross section for thermal neutron (48.89kb)

10-1

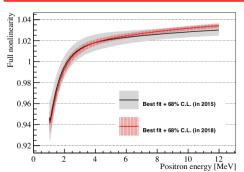
- Neutron captured Gd emits 3-4 g ray in total 8 MeV
- Can tag $\bar{\nu}_{\rm e}$ by using the delayed coincidence technique
- Earliest possible Gd in Super-K would be in late 2019

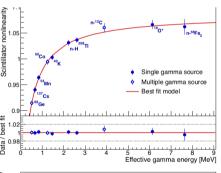
v Energy₁in MeV

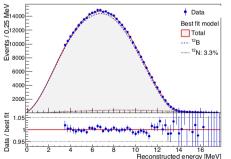

MeV

•Reactor neutrinos

Daya Bay

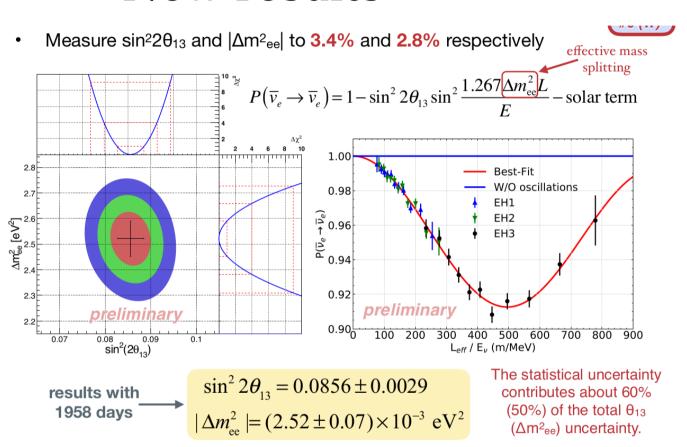

Pedro Ochoa-RicouX

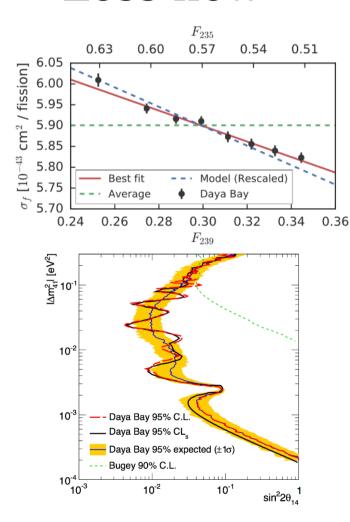

 The antineutrino detectors (ADs) are "three-zone" cylindrical modules immersed in water pools:



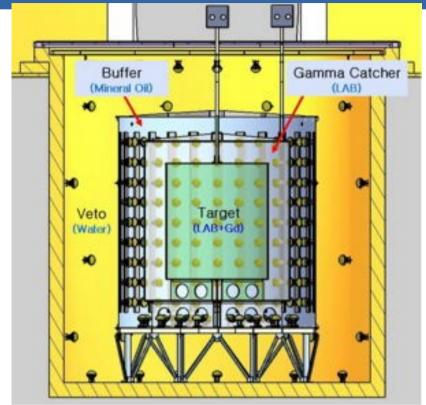
- Improved energy response model
- Improved ⁹Li/ ⁸He and SNF Estimations
 - uncertainty in near ADs reduced from 50% to 30%
- More than 3.9 million antineutrino interactions (0.5 million at far site)

- New oscillation results with 1958 days of data
- Select unambiguous promptdelayed pairs with right energies and time separation, not in coincidence with a muon
- < 2% background in all halls
- Roughly 60% increase in statistics with respect to previous result
- The model is built based on various gamma peaks and the continuous ¹²B spectrum
 - Validated with low energy β+γ spectra from ²¹²Bi and ²¹⁴Bi
- Halved uncertainty of absolute energy scale to ~0.5%



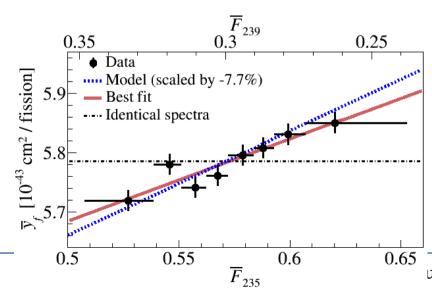

Daya Bay

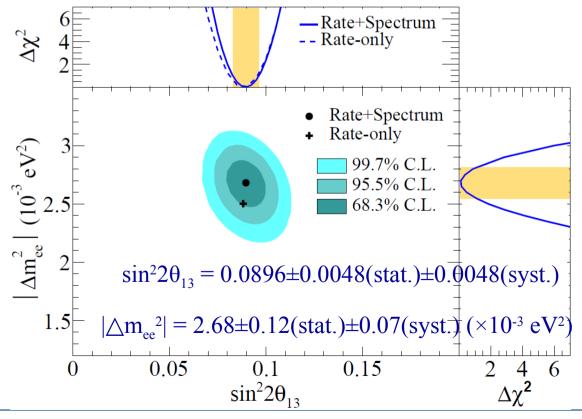
New results

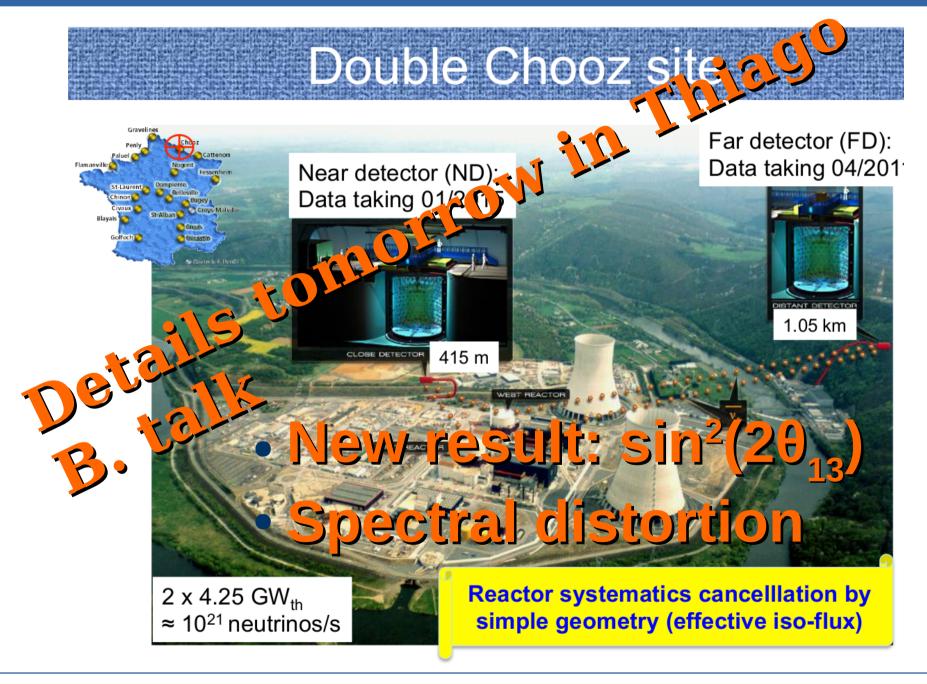

$$R_{\text{data/pred}} = 0.952 \pm 0.014 \text{(exp.)} \pm 0.023 \text{(model)}$$

$$\sigma_f = (5.91 \pm 0.09) \times 10^{-43} \text{ cm}^2 / \text{fission}$$

Less new

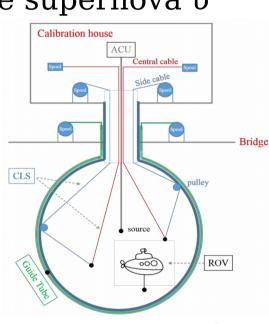

EH1-AD1 was taken down permanently and its Gd-LS replaced with JUNO LS

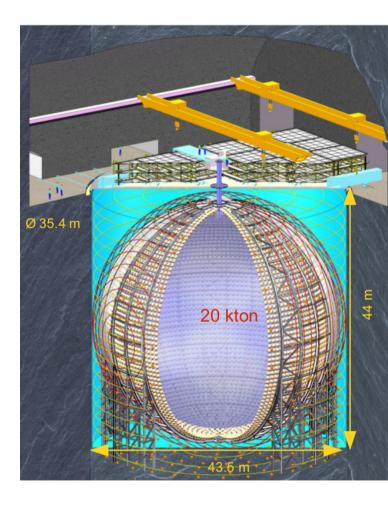

RENO



Precise measurement of $|\Delta m_{ee}^2|$ and θ_{13} using ~2200 days of data (Aug. 2011 – Feb 2018)

Fuel-composition dependent reactor antineutrino yield

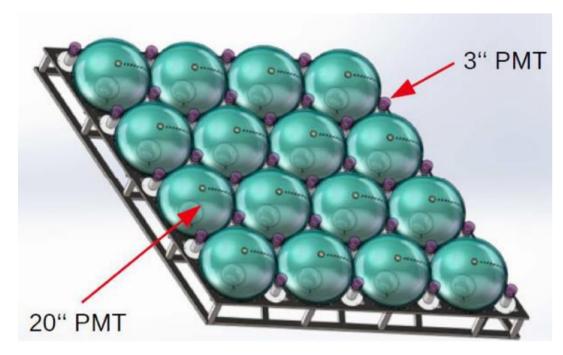


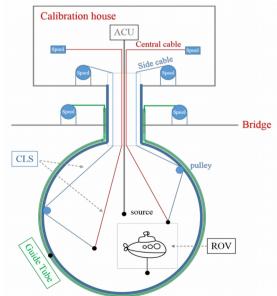

JUNO

- Main goal: Mass Hierarchy (MH)
- Additional physics program:
 - Supernova υ, diffuse supernova υ
 - Geo-neutrinos
 - Solar neutrinos
 - Proton decay
 - Atmospheric υ
 - Sterile neutrinos

Requirements:

- Reactor baseline variation: < 0.5 km
- Energy resolution: $\sim 3\%/\sqrt{E}$
- Energy scale uncertainty: < 1%
- Energy scale uncertainty: < 1%




JUNO

- Double calorimetry
- Big PMTs:
 - In production since 2016
 - Already >9000 delivered
 - More than 5000 tested
- Small PMTs
 - Always photon counting
 - 25000 PMTs contracted to HZC
 - 4000 produced, 3000 tested at HZC

Need reactor spectrum with energy resolution similar to JUNO

- Started near detector R&D
- SiPM → need -50°C → 1.7% energy resolution
- Serve as benchmark to test nuclear databases

27

•The global three-neutrino picture before Neutrino 2018

Global 3 v picture

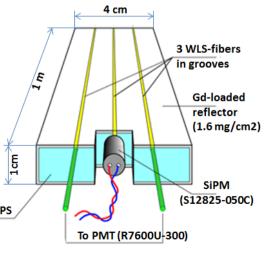
$$U_{3\times3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Current status:

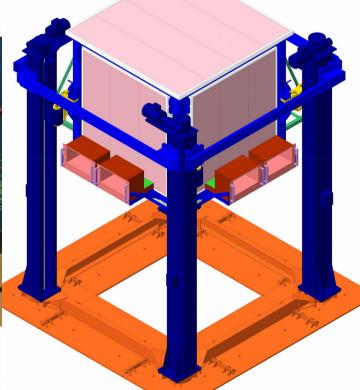
- Very precise and robust determinations for most of them (1.3-10%)
- Slight preference for θ_{23} at the 2nd octant, with $\Delta \chi^2$ (45°) = 1.6 for NO
- Preference for $\pi < \delta < 2\pi$, with CP conservation allowed at 2σ
- 3σ hint for NO from atmospheric, LBL and reactor data
- ⇒ new T2K and NOvA data may affect δ and θ₂₃ octant results
- By 2025/2026:
 - 2-3σ sensitivity to CP violation at NOvA and T2K-II
- For sensitivities above 3σ from a single experiment
 - · DUNE, Hyper-Kamiokande

parameter best fit ± 1σ 3σ range $\Delta m_{21}^2 \left[10^{-5} \text{eV}^2\right]$ 7.55 $^{+0.20}_{-0.16}$ 7.05–8.14 $\left \Delta m_{31}^2\right \left[10^{-3} \text{eV}^2\right]$ (NO) 2.50±0.03 2.41–2.60 $\left \Delta m_{31}^2\right \left[10^{-3} \text{eV}^2\right]$ (IO) 2.42 $^{+0.03}_{-0.04}$ 2.31-2.51 $\sin^2 \theta_{12}/10^{-1}$ 3.20 $^{+0.20}_{-0.16}$ 2.73–3.79 $\sin^2 \theta_{23}/10^{-1}$ (NO) 5.47 $^{+0.20}_{-0.30}$ 4.45–5.99 $\sin^2 \theta_{23}/10^{-1}$ (IO) 5.51 $^{+0.18}_{-0.30}$ 4.53–5.98 $\sin^2 \theta_{13}/10^{-2}$ (NO) 2.160 $^{+0.083}_{-0.069}$ 1.96–2.41 $\sin^2 \theta_{13}/10^{-2}$ (IO) 2.220 $^{+0.074}_{-0.076}$ 1.99–2.44 δ/π (NO) 1.32 $^{+0.21}_{-0.15}$ 0.87–1.94 δ/π (IO) 1.56 $^{+0.13}_{-0.15}$ 1.12–1.94			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	parameter	best fit $\pm 1\sigma$	3σ range
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	$\Delta m_{21}^2 \ [10^{-5} \text{eV}^2]$	$7.55^{+0.20}_{-0.16}$	7.05–8.14
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)}$	2.50 ± 0.03	2.41 - 2.60
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] (\text{IO})$	$2.42^{+0.03}_{-0.04}$	2.31 - 2.51
$\sin^2 \theta_{23}/10^{-1}$ (IO) $5.51^{+0.18}_{-0.30}$ $4.53-5.98$ $\sin^2 \theta_{13}/10^{-2}$ (NO) $2.160^{+0.083}_{-0.069}$ $1.96-2.41$ $\sin^2 \theta_{13}/10^{-2}$ (IO) $2.220^{+0.074}_{-0.076}$ $1.99-2.44$ δ/π (NO) $1.32^{+0.21}_{-0.15}$ $0.87-1.94$	$\sin^2 \frac{\theta_{12}}{10^{-1}}$	$3.20^{+0.20}_{-0.16}$	2.73 – 3.79
$\sin^2 \theta_{23}/10^{-1}$ (IO) $5.51^{+0.18}_{-0.30}$ $4.53-5.98$ $\sin^2 \theta_{13}/10^{-2}$ (NO) $2.160^{+0.083}_{-0.069}$ $1.96-2.41$ $\sin^2 \theta_{13}/10^{-2}$ (IO) $2.220^{+0.074}_{-0.076}$ $1.99-2.44$ δ/π (NO) $1.32^{+0.21}_{-0.15}$ $0.87-1.94$	$\sin^2 \theta_{23}/10^{-1}$ (NO)	$5.47^{+0.20}_{-0.30}$	4.45 - 5.99
$\sin^2 \theta_{13}/10^{-2}$ (IO) $2.220^{+0.074}_{-0.076}$ $1.99-2.44$ δ/π (NO) $1.32^{+0.21}_{-0.15}$ $0.87-1.94$			4.53 - 5.98
$\sin^2 \theta_{13}/10^{-2}$ (IO) $2.220^{+0.074}_{-0.076}$ $1.99-2.44$ δ/π (NO) $1.32^{+0.21}_{-0.15}$ $0.87-1.94$	$\sin^2 \frac{\theta_{13}}{10^{-2}}$ (NO)	$2.160^{+0.083}_{-0.069}$	1.96 - 2.41
10.10	,	$2.220_{-0.076}^{+0.074}$	
10.10	δ/π (NO)	$1.32^{+0.21}_{-0.15}$	0.87 - 1.94
	δ/π (IO)		1.12-1.94

•BSM Sterile neutrinos with reactors

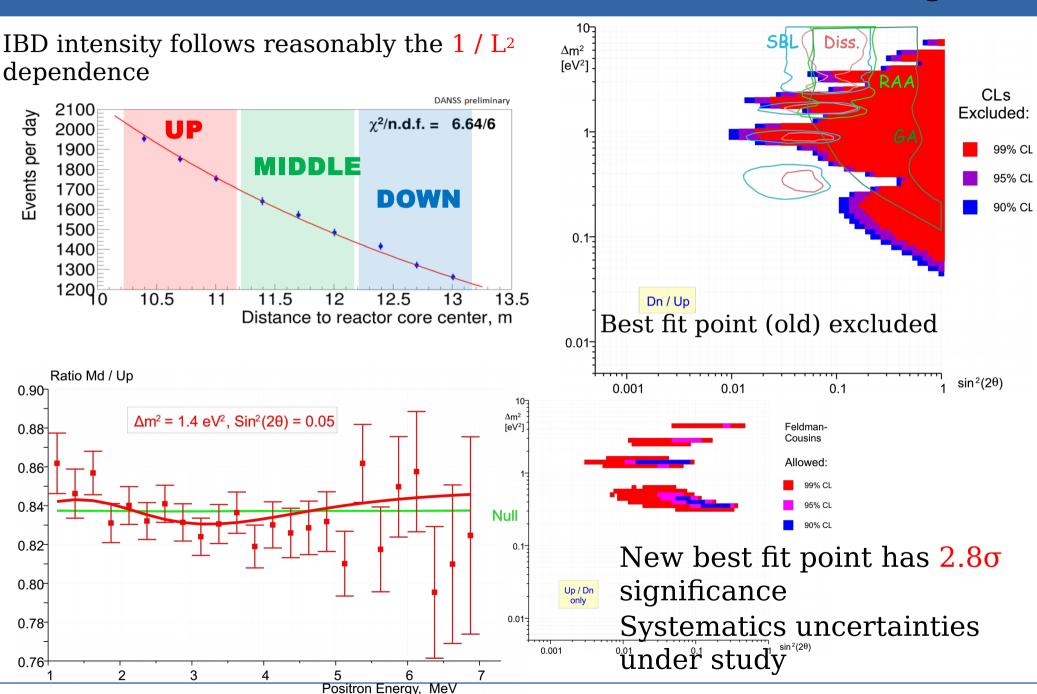


DANSS

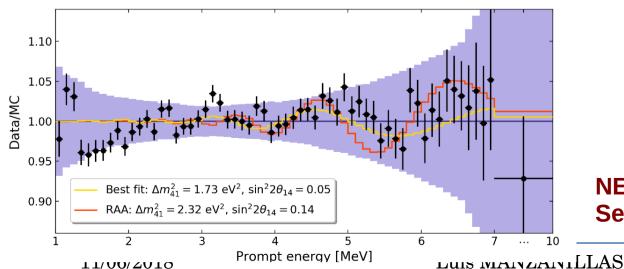

- Observe evolution of the neutrino flux with distance
 - Detector placed in an elevator
- Taking data since Apr 2016 (data available for analysis since Oct 2016)
- 4910 IBD events/day are detected in the closest position

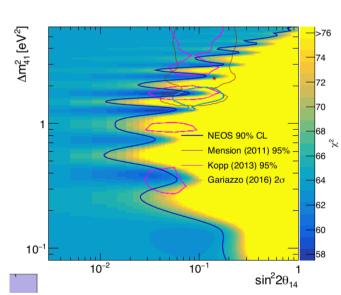
• Background: 133 μ-induced events/day (2.7% for Up pos.)

Basic element: polystyrene based scintillator strip



DANSS


11/06/2018



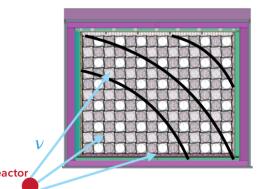
Luis MANZANILLAS

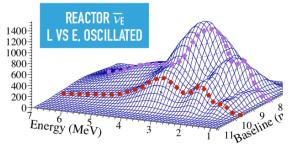
- Homogeneous LS target
 - — 1008 L volume
 - (R 51.5, L 121) cm
 - LAB+UG-F (9:1)
 - 0.5% Gd loaded for high neutron capture efficiency
 - 38 8" PMT in mineral oil buffer

Normalized with the Daya Bay shape Model dependent \rightarrow Fine structures in reactor ν spectrum or oscillation?

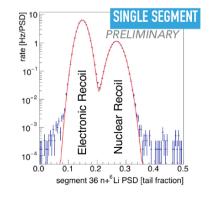
NEOS phase-II measurement from September 2018

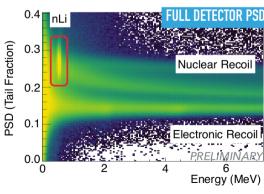
STEREO

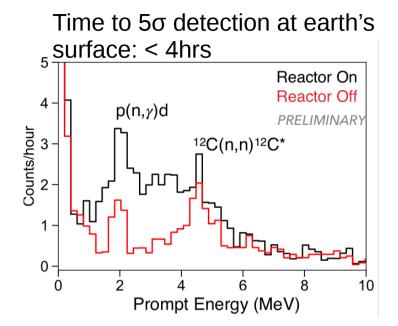


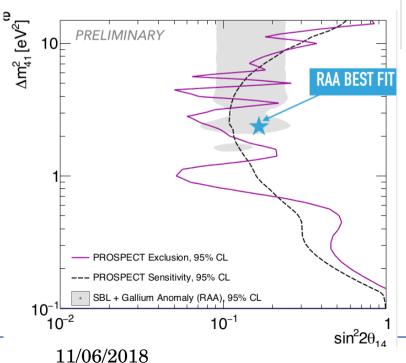

Prospect

Thomas Langford

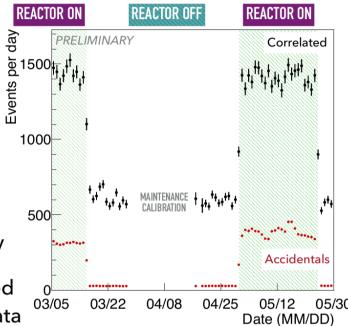

- SEARCH FOR SHORT-BASELINE OSCILLATIONS FROM STERILE NEUTRINOS INDEPENDENT FROM REACTOR MODEL INPUTS
- MEASURE 235U ENERGY SPECTRUM TO RESOLVE THE SPECTRAL ANOMALY
- Experimental Strategy:
 - 154 segments, 119cm x 15cm x 15cm filled with Li loaded LS
 - Measure spectrum at a range of baselines (7-9m in current position)
 - Reactor-model independent search for oscillations throughout the detector
 - High-statistics, high-resolution ²³⁵U neutrino energy spectrum

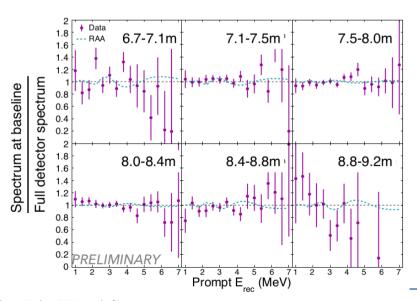

OSCILLATIONS AT PROSPECT


PULSE SHAPE DISCRIMINATION PERFORMANCE



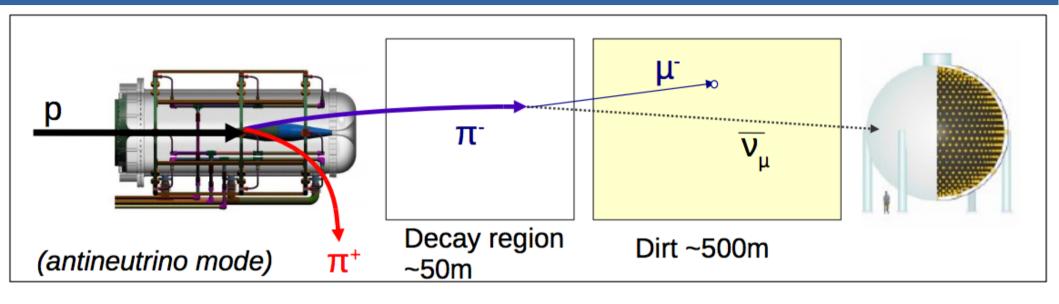
Prospect


Thomas Langford

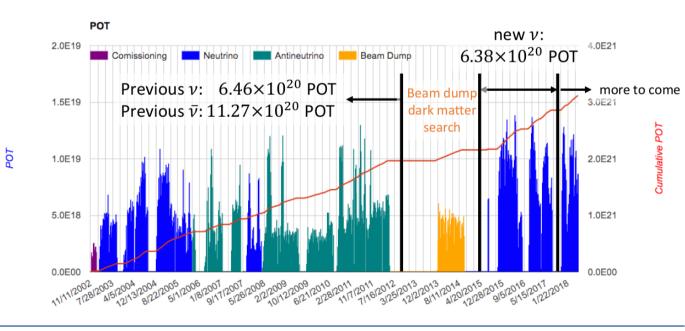


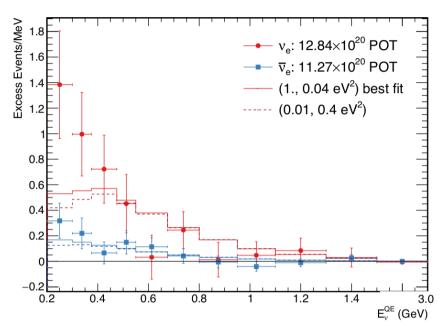
FIRST ANALYSIS DATA SET (ARXIV: 1806.02784)

- 33 days of Reactor On
- 28 days of Reactor Off
- Correlated S/B = 1.36
- Accidental S/B = 2.25
- 24,608 IBDs detected
- Average of ~750 IBDs/day
- IBD event selection defined and frozen on 3 days of data

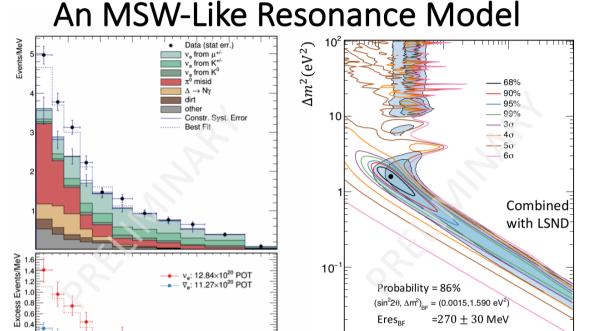


•Sterile neutrinos with accelerators


MiniBoone


En-Chuan Huang

39



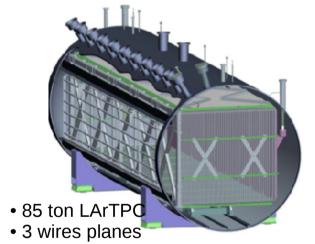
- 15+years of running in neutrino, antineutrino, and beam dump mode. More than 30×10²⁰ POT to date.
- Result of a combined 12.84×10^{20} POT in ν mode $+ 11.27 \times 10^{20}$ POT in $\bar{\nu}$ mode

Excess in neutrino and antineutrino mode is qualitatively consistent

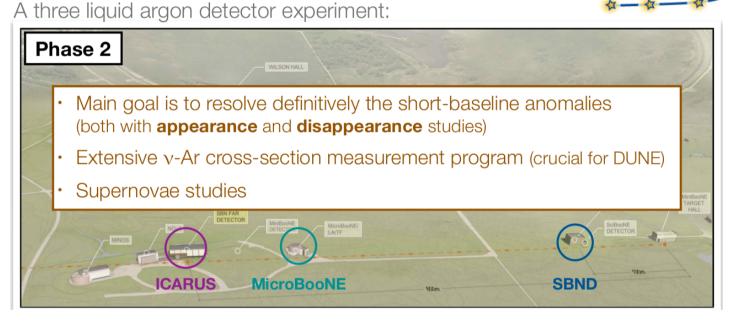
A more exotic model could provide a better fit to the MiniBooNE/LSND data

E. (GeV)

 10^{-3}

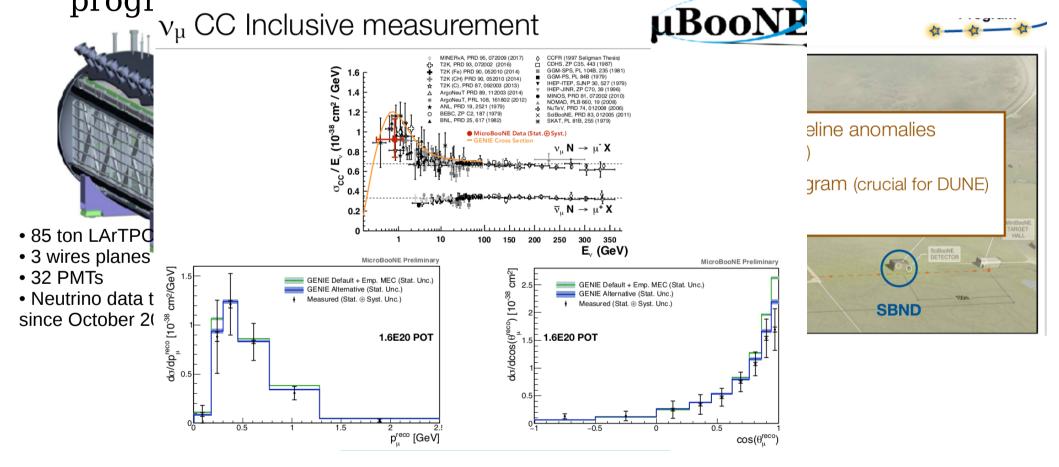

 10^{-2}

 10^{-1}


 $\sin^2 2\theta$

- MiniBooNE confirms (this time) LSND excess at 4.8 σ , with a combined significance at 6.1 σ
 - Gamma bkg or electrons?
 - MicroBooNE will confirm whether excess is due to electrons or photons
 - SBNP will confirm if excess is due to neutrino oscillations

- DUNE long-baseline program will strongly rely on the resolution of these SB anomalies
- Need to resolve the anomalies → Short Baseline Neutrino program at Fermilab

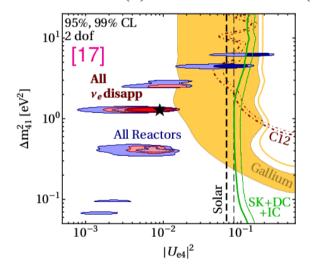


- 32 PMTs
- Neutrino data taking since October 2015

 DUNE long-baseline program will strongly rely on the resolution of these SB anomalies

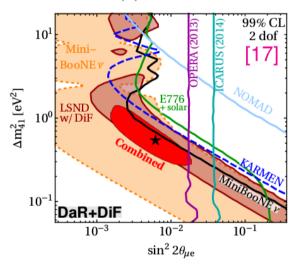
• Need to resolve the anomalies → Short Baseline Neutrino program at Formilab

SBN is a definitive program to address LSND/MiniBooNE anomalies in the immediate future (~5 years)


• The global picture

II. Oscillation anomalies: $\nu_{\mu} \rightarrow \nu_{e}$ appearance

16


v_e disappearance

- Relevant experiments: Gallium (v)
 - SBL reactors (\bar{v}) Atmos (v, \bar{v})
 - LBL reactors $(\bar{\nu})$ Solar (ν)
 - KamLAND $(\bar{\nu})$ 12 C (ν)

$\nu_{\mu} \rightarrow \nu_{e}$ appearance

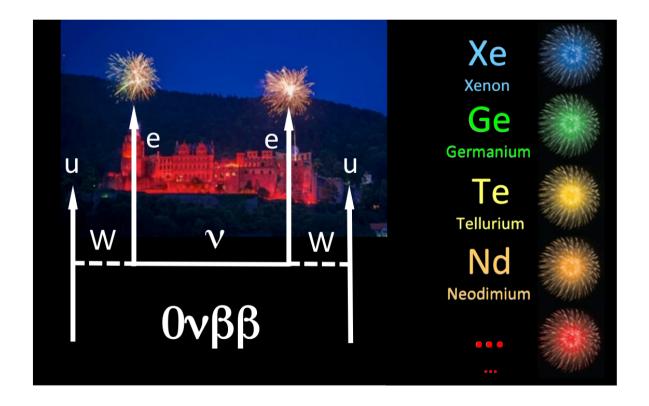
- Relevant experiments: -LSND $(\bar{\nu})$
 - MiniBooNE $(\nu, \bar{\nu})$ KARMEN $(\bar{\nu})$
 - E776 (v, \bar{v}) NOMAD (v)
 - ICARUS (v) OPERA (v)

• Note: $\nabla_e \to \nabla_e$ and $\nabla_\mu \to \nabla_e$ probe the same Δm^2 but a different mixing angle \Rightarrow mutual comparison requires embedding them into a **general oscillation model**.

[17] Dentler, Hernández-Cabezudo, Kopp, Machado, MM, Martinez-Soler, Schwetz, arXiv:1803.10661.

Michele Maltoni <michele.maltoni@csic.es>

NEUTRINO 2018, 8/06/2018

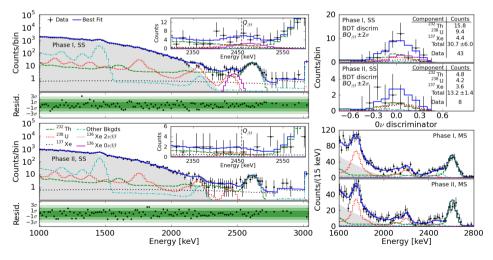

Summary 25

- Anomalies in $\nu_e \rightarrow \nu_e$ disappearance and $\nu_\mu \rightarrow \nu_e$ appearance experiments point towards conversion mechanisms beyond the well-established 3ν oscillation paradigm;
- each of these anomalies can be individually explained by sterile neutrinos;
- sterile neutrinos still succeed in simultaneously explaining groups of anomalies sharing the same oscillation channel. However some problem arises:
 - $-\nu_e \rightarrow \nu_e$ disappearance data face issues with <u>flux normalization</u> and <u>the 5 MeV bump</u>, as well as small tensions in reactor vs gallium and <u>"rates" vs DANSS/NEOS</u>;
 - $-\nu_{\mu} \rightarrow \nu_{e}$ appearance data show an excess in low-E neutrino data, which is not so manifest in antineutrino data.
- in contrast, no anomaly is found in any $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance data set;
- \Rightarrow sterile neutrino models **fail to simultaneously account** for **all** the $\nu_e \rightarrow \nu_e$ data, the $\nu_\mu \rightarrow \nu_e$ data and the $\nu_\mu \rightarrow \nu_\mu$ data. This conclusion is robust;
- if the $v_e \to v_e$ and $v_\mu \to v_e$ anomalies are confirmed, and the $v_\mu \to v_\mu$ bounds are not refuted, new physics will be needed. Such new physics <u>may well involve extra sterile</u> neutrinos, but together with something else (or some "unusual" neutrino property).

Michele Maltoni <michele.maltoni@csic.es>

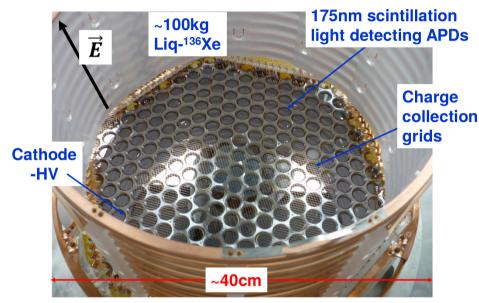
NEUTRINO 2018, 8/06/2018

•Double beta decay



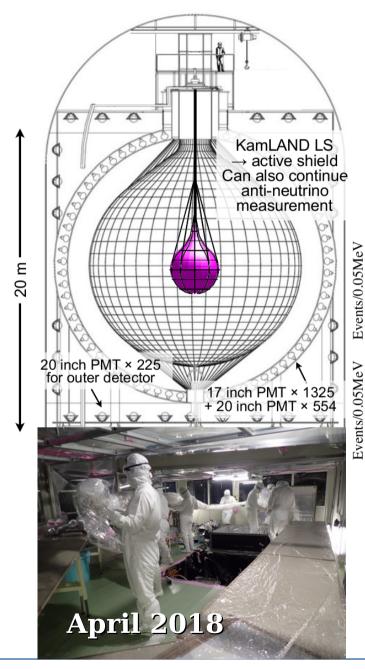
No "golden" isotope, search in a variety!

EXO-200 and nEXO


Giorgio Gratta

- Use 136Xe in liquid phase
- Build EXO-200, first 100kg-class experiment to produce results.
 Phase II in progress, will end in Dec 2018
- Build the 5-tonne nEXO, reaching $T_{1/2} \sim 10^{28}$ yr and entirely covering the Inverted Hierarchy

No statistically significant excess: combined p-value $\sim 1.5\sigma$


The EXO-200 liquid ¹³⁶Xe Time Projection Chamber

- A final 0νββ result will follow the end of Phase II (Dec 2018)
- R&D in progress to finalize the design of nEXO
- EXO-200 was the first 100kg-class experiment to run and demonstrated the power of a large and homogeneous LXe TPC
- "nEXO pCDR" arXiv:1805.11142

KamLAND-Zen

Azusa Gando

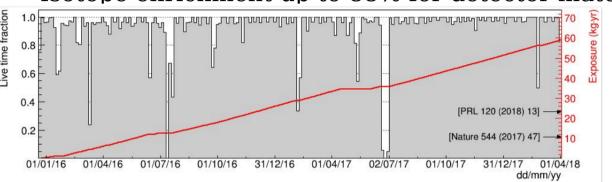
- 136Xe loaded LS \rightarrow into KamLAND center with inner balloon
- Double beta decay isotope:
 - 136**Xe**
 - Q-value 2.458 MeV
 - Enrichment ~90%

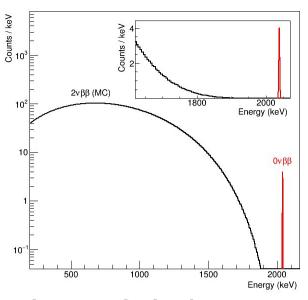
Energy spectrum 2.3 < E < 3.0 MeV. R < 1.0 m

Found no significant 0vββ signal

Limit of Phase-II (90% C.L.)

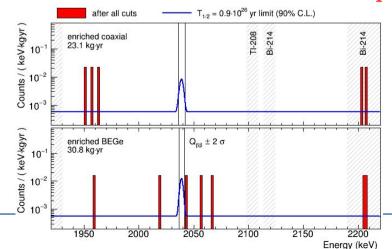
Period-1: < 3.4 events/day/kton-LS Period-2: < 5.5 events/day/kton-LS → combined: < 2.4 events/day/kton-LS

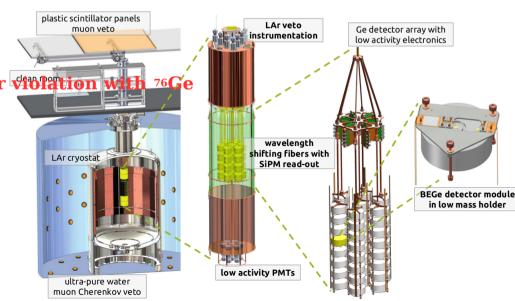

 $T^{1/2} > 9.2 \times 10^{25} \text{ yr}$


- KamLAND-Zen 800 will start this year with target \langle m $\beta\beta$ \rangle of ~ 40 meV
- KamLAND2-Zen (~1ton of enriched Xenon) is planned to search deeper into inverted hierarchy region of $\langle m \beta \beta \rangle$

Gerda

Anna Julia Zsigmond


- $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2\text{e-} \text{ with } Q_{BB} = 2039 \text{ keV}$
- Source and detector are the same
- Isotope enrichment up to 88% for detector material



- Blinded analysis: events with energy Q $\beta\beta$ ± 25 keV not processed until all analysis cuts finalized
- > 10^{26} yr sensitivity for limit setting
- GERDA upgrade 2018
 - New inverted coaxial type detectors \rightarrow more enriched mass
 - Improved LAr veto \rightarrow more LAr light yield

• LEGEND will continue the search for lepton number violation with

Majorana

Vincente Guiseppe

Poly Shield

Muon Veto

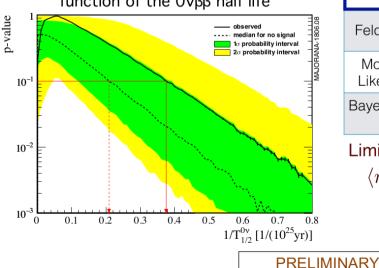
Panels

Lead Bricks

Radon Enclosure

Inner Cu

Shield


Outer Cu Shield

- 44.1-kg of Ge detectors
 - 29.7 kg of 88% enriched ⁷⁶Ge crystals
 - 14.4 kg of nat Ge
- Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - Ultra-clean, electroformed Cu
 - 22 kg of detectors per cryostat
 - Naturally scalable

- Background index:

 $15.4 \pm 2.0 \,\mathrm{cts/(FWHM\ t\ yr)}$

Frequentist profile likelihood method, as a function of the OVBB half life

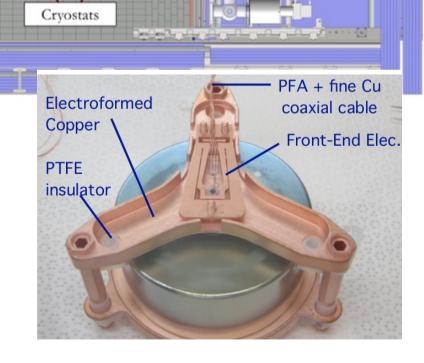
11/06/2018

Method	Exclusion Limit
Nominal Profile Likelihood	2.7 x 10 ²⁵ yr
Feldman-Cousins	2.5 x 10 ²⁵ yr
Modified Profile Likelihood (CLS)	2.5 x 10 ²⁵ yr
Bayesian flat decay rate prior	2.5 x 10 ²⁵ yr

Limit implies:

National Octobrillation Column CO10

 $\langle m_{\beta\beta} \rangle < (200 - 433) \,\text{meV}$


using:

 $M_{0\nu} = 2.81 - 6.13$

 $G_{0\nu} = (2.36 - 2.37) \times 10^{-15} \,\mathrm{yr}^{-1}$

 $g_A = 1.27$

Luis MANZANILLAS

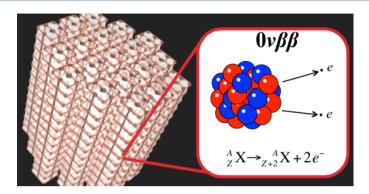
Optimization of analysis cuts underway to improve background rejection, to be tested on ongoing blind data later this year

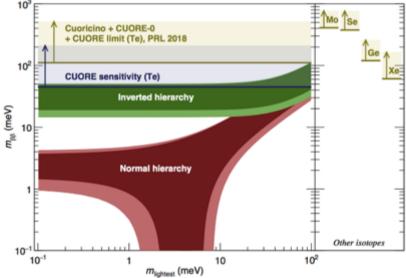
Vacuum and

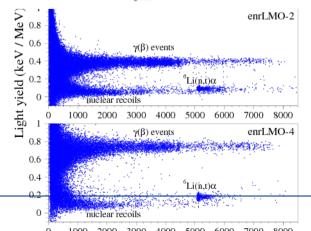
Cryogenics

CUORE

Jonathan Ouellet


- Primary physics goal is the search for 0νββ decay of 130Te
- Array of 988 TeO₂ bolometers
 - Solid state detectors operating at lo temperatures: ~10mK
 - 1 MeV energy deposition causes \sim 100 μK increase in temperature
 - Detector is made out of Te and contains the candidate isotope inside
- With 7 weeks of data, set the most stringent limit on the $0\nu\beta\beta$ half-life of ¹³⁰Te to date


CUORE Upgrade with Particle ID (CUPID) R&D

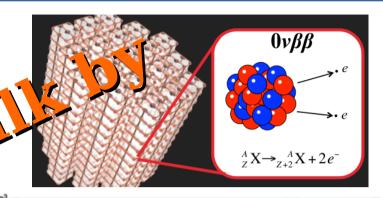

- \bullet Goal of reducing the background in the ROI by rejecting all α events with particle ID
- CUORE will execute its scientific program to completion.
 CUORE's success motivates a next-generation bolometric experiment

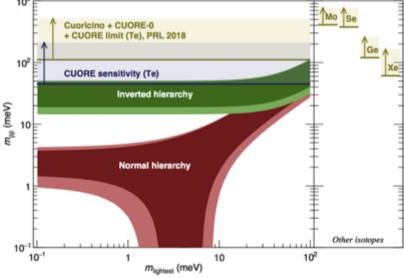
CUPID will adopt the scintillating-bolometer lithium molybdate technology

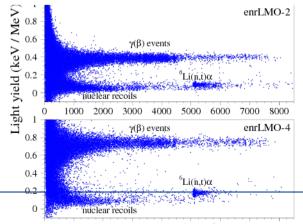
Will use present CUORE infrastucture at LNGS.

CUORE

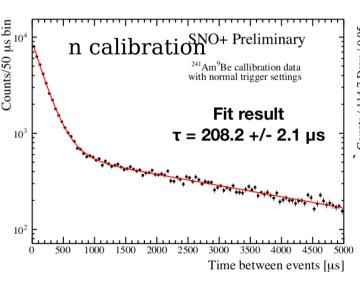
Jonathan Ouellet

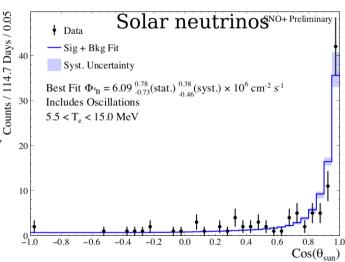

- Primary physics goal is the search for 0νββ decay of 130Te
- Array of 988 TeO₂ bolometers
 - Solid state detectors operating at lo temperatures: ~10mK
 - 1 MeV energy deposition causes ~ 100 μK increase in temperature
 - Detector is made out of Te and contains the cond a te isotope inside
- With 7 weeks of data, set the mass syingent limit on the $0\nu\beta\beta$ half-life of ¹³⁰Te o late

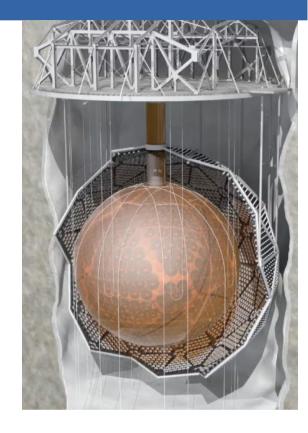

CUORE Upgrade wat (Particle ID (CUPA)) R&D


- Goal of reduction the background the ROI by rejecting all α events with particle α
- CLOW will execute it scientific program to completion. CUORE's successmotivates a next-generation bolometric experiment

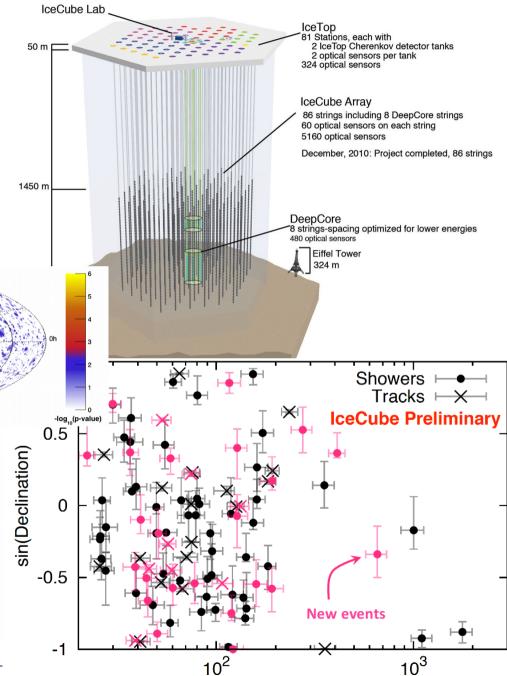
CUPID will adopt the scintillating-bolometer lithium molybdate technology


Will use present CUORE infrastucture at LNGS.



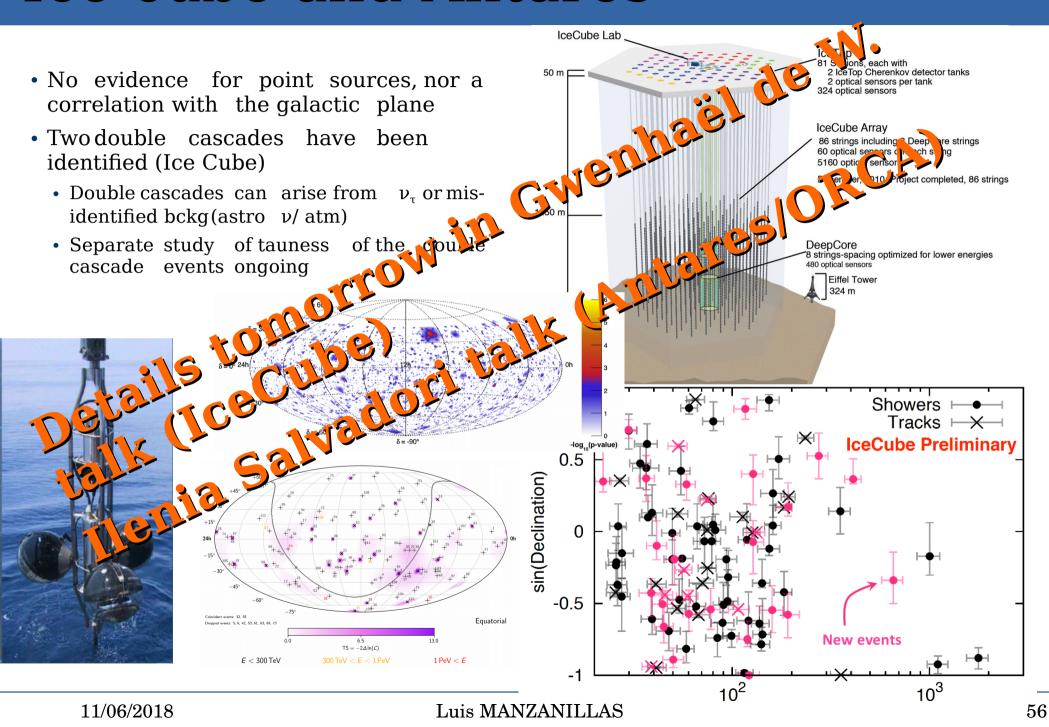


- 780 ton LAB/PPO (2g/L) in 6m radius acrylic vessel (AV)
- ~ 9400 PMTs at 8.5m
- Method: Load LAB/PPO with 0.5% nat Te
- SNO+ will operate in 3 phases:
 - Water filling complete (Feb 2017) \rightarrow Data taking ongoing
 - LS fill in July 2018
 - Teloading in spring 2019



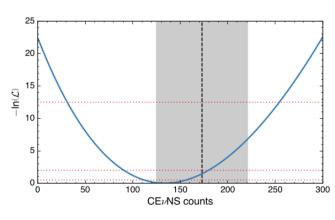
- 8 B solar ν flux measurement at low threshold and with ultra-low background
- potential for a search for antineutrinos in "unloaded" water
- Scintillator fill (July 2018)

•Neutrino astronomy


Ice cube and Antares

- No evidence for point sources, nor a correlation with the galactic plane
- Two double cascades have been identified (Ice Cube)
 - Double cascades can arise from ν_{τ} or misidentified bckg(astro v/ atm)
 - Separate study of tauness of the double cascade events ongoing

Ice cube and Antares

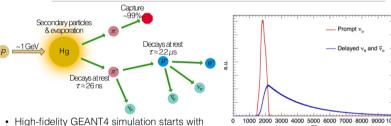


•Coherent neutrino scattering

Coherent

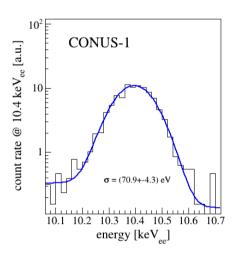
Grayson C. Rich

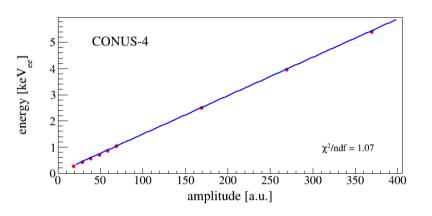
- Coherent elastic neutrino-nucleus scattering (CEνNS)
- Goal: unambiguous observation of CEvNS using multiple nuclear targets / detector technologies
 - Utilize intense, pulsed neutrino source provided by Spallation Neutron Source (SNS)
- Pioneering CEvNS detector: CsI[Na]
- Results:
 - Beam exposure: \sim 6 GWhr, or \sim 1.4 × 10²³ protons on target (0.22 grams of protons)
 - Analyzed as a simple counting experiment: 136 ± 31 counts
 - 2-D profile likelihood analysis
 - 134 \pm 22 counts, within 1- σ of SM prediction of 173 \pm 48
 - Null hypothesis disfavored at 6.7- σ level relative to best-fit number of counts



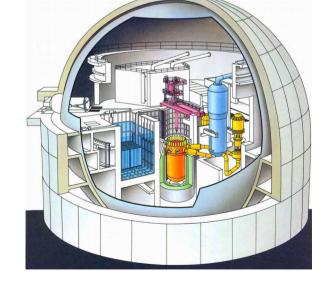
Dominant systematic uncertainties on predicted rates

Quenching factor	25%
ν flux	10%
Nuc. form factor	5%
Analysis acceptance	5%




High-fidelity GEANT4 simulation starts wire proton beam; energy spectra very near

CEVNS predicted in 1974 but unobserved until 2017


→ Observed at 6.7-σ level using 14.6-kg CsI[Na] scintillator deployed at pulsed, stopped-pion ν source (SNS) COHERENT continues to search for CEνNS with numerous detectors (LAr, NaI[TI], Ge PPCs)

- CEVNS detection with reactor neutrinos
- Ge-detector approach
- Operational since April 1, 2018
- After the first 2 months, 114 kg*d / 112 kg*d of reactor OFF/ON data were collected

	counts	counts/ $(d \cdot kg)$ (*)
reactor OFF (114 kg*d)	582	
reactor ON (112 kg*d)	653	
ON-OFF (exposure corr.)	84	0.94
Significance	2.4σ	2.3σ

(*) Including stat. uncertainty and above efficiencies

→ Observed excess of events is consistent with expected CEvNS signal range

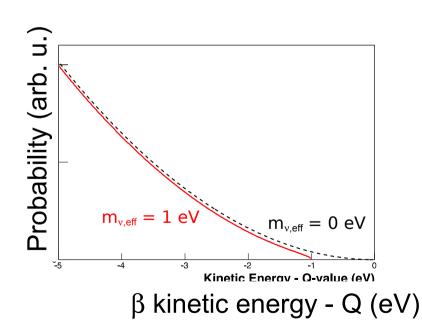
CEVNS at Chooz

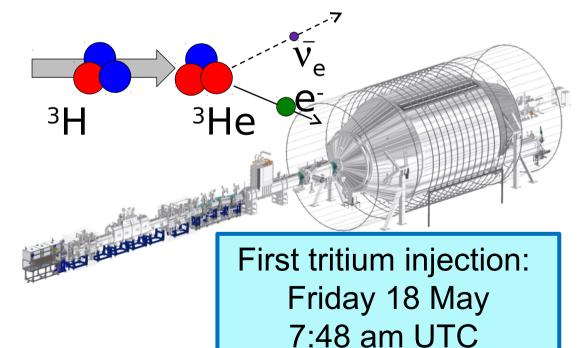
1

2

3

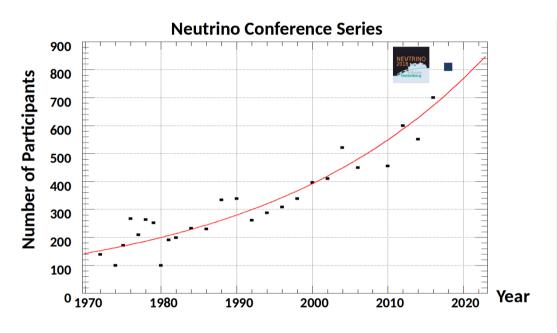
Strategy	Detector mass and E _{th} *
Short range	O(10-100 g)
(< 10 m)	E _{th} < 300 eV
Mid range	O(0.1-1 kg)
(< 100 m)	E _{th} < 100 eV
Long range	O(1-10 kg)
(< 0.5-1 km)	E _{th} < 50 eV


Luis MANZANILLAS

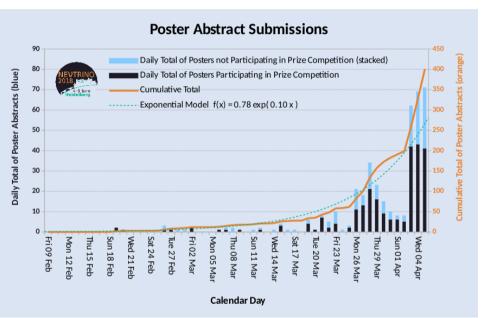


Diana Parno

- High-Precision Neutrino-Mass determination with Tritium
- Full sensitivity ($\sigma_{syst} = \sigma_{stat}$) after 3 beam years (~5 calendar years)



KATRIN is a working experiment


•Neutrino 2018

The people

Record of participants

Record of posters

Goodbye, Heidelberg 2018 Hello, Chicago 2020! 2022 Seoul 2024 Milano

Conclusions

- A lot of new results from different experiments
- T2K/Nova can reach the 3 σ level for δ CP by 2020
 - Next generation DUNE/HK progressing quickly
- Precision measurement of θ_{13} from reactor experiments
 - JUNO development ongoing
- Light sterile neutrino hypothesis could be confirmed or rejected in the short period
- New limits from double beta decay experiments
 - Next generation coming soon

Thanks for your attention

Stay tuned! All these people are working hard to provide new results!