CORE-COLLAPSE SUPERNOVA SIGNAL DETECTION WITH BOREXINO AND FRIENDS

Zara Bagdasarian¹, Maxim Gromov², Claudio Casentini³, Odysse Halim⁴ on behalf of the Borexino collaboration^(1,2) and GWNU working group

JULY 4 2018 I WORKSHOP ON CORE-COLLAPSE SUPERNOVA NEUTRINO DETECTION, ORSAY, FRANCE

¹IKP Forschungszentrum Jülich; ²SINP Moscow State University, ³INFN Sezione Roma Tor Vergata, ⁴Gran Sasso Science Institute

Say Hi to Borexino

3800 m.w.e shielding against cosmic rays

Laboratori Nazionali del Gran Sasso (LNGS)

Water tank

R = 9 m, 2.1 kt waterShielding Cherenkov muon veto

Stainless Steel Sphere

R = 6.85 mPMTs support Buffer + scint. container

208 Outer Detector **PMTs**

2212 Inward-facing **PMTs**

Nylon Outer Vessel

R = 5.5 mBarrier for 222Rn from steel, PMTs etc.

Buffer

Pseudocumene (PC) + DMP quencher

Nylon Inner Vessel

R = 4.25 m \sim 300 tons of liquid scintillator (PC/PPO solution)

Say Hi to Borexino: Detection Channels

Most radiopure scintillator core, lowest threshold on real-time measurements

Low-energy threshold
High Light Yield
Good energy and position resolution
No directionality

Neutrinos detection: Elastic scattering on electrons

Antineutrinos detection: Inverse Beta Decay (IBD)

Core Collapse Supernova Search Activities @ Borexino

SNEWS

SuperNova Early Warning System

Core Collapse Supernova Search Activities @ Borexino

SNEWS

SuperNova Early Warning System

SNEWS 2.0?

Online Low latency

Common Front of Supernova Hunt?

Borexino @ SNEWS

- Current NU experiments in SNEWS:

 - IceCube
 - KamLAND
 - Borexino
 - Super-K
 - Daya Bay
 - HALO
- Prospective experiments in **SNEWS**:
 - NOVA
 - SNO+
 - KM3NeT?

Running in automated mode since 2005

Borexino joined in July 2009

SNEWS & GWNU

Current **NU** experiments in **SNEWS**:

• GW

- LVD
- IceCube
 - eCube **GWNU**

VIRGO

LIGO

Borexino

KamLAND

- Super-K
- Daya Bay
- HALO
- Prospective experiments in SNEWS/GWNU:
 - NOVA
 - SNO+
 - KM3NeT?
 - MicroBooNE
 - XENON1T

GWNU Overview

• Current **NU** experiments in **SNEWS**:

o GW

LIGO

VIRGO

- IceCube
- KamLAND
- Borexino

GWNU Global network

GWNII

Proposed in 2010/2013, MoU since 2015

Main Goal: Search and Investigation of Core-Collapse Supernova signals from the Local Group

> Conservative approach: t_coin = ± 10 s Galactic events -> Smaller time window

Borexino's friends in GWNU

Borexino

- Liquid Scintillator
- Energy & NC
- M= 0.3 kton

IceCUBE

- Ice Cerenkov
- Statistics
- M≈ 0.4kton/PMT

Kamland

- Liquid Scintillator
- Energy & NC
- M= 1 kton

Japan

LVD

- Liquid
 Scintillator
- Energy & NC
- M= 1 kton

Italv

Hartford, Livinston, USA

Core Collapse Supernova Search Activities @ Borexino

Methodology

Background and False Alarm Rate

- 10 years of simulated background per experiment
- The number of triggers (m) in overlapped time window (w=20s)
- Algorithm following LVD paper Astroparticle Physics 28 (2008) 516-522

Triggers produced with the rate of experimental background

Reconstructed bursts with an associated false alarm rate

$$R_{FA} = 8640 \sum_{k=m_i}^{\infty} \frac{(R_{bkg} w)^k e^{-R_{bkg} w}}{k!}$$

 $R_{FA}\,$ - false alarm rate

 R_{bkg} - rate of experimental background

Background and False Alarm Rate

$$R_{FA} = 8640 \sum_{k=m_i}^{\infty} \frac{(R_{bkg} w)^k e^{-R_{bkg} w}}{k!}$$

- R_{FA} False alarm rate, aka imitation frequency
- R_{bkg} background rate of the given detector
- m_i multiplicity, the number of triggers in overlapped time window (w=20s)
- 8640 number of 20s windows in 1 day (overlapped every 10 sec)

Signal Injection

- Injection of simulated signals at the given distance with a rate of 1/day inside previously produced unclustered background events time series
- 3652 signals for each distance
- Burst definition and reduction procedure -> detection efficiency η (D)

Detection efficiency

$$\eta(D) = \frac{N_{rec,s}}{N_{inj,s}}$$

Detection efficiency

$$\eta(D) = \frac{N_{rec,s}}{N_{inj,s}}$$

Misidentification probability

$$\zeta(D) = \frac{N_{rec,b}}{N_{rec,b} + N_{rec,s}}$$

Detection efficiency

$$\eta(D) = \frac{N_{rec,s}}{N_{inj,s}}$$

Misidentification probability

$$\zeta(D) = \frac{N_{rec,b}}{N_{rec,b} + N_{rec,s}}$$

Borexino detector working alone at a background level R_{FA} = 1 ev/day.

LVD

Each detector working alone at a background level $R_{\text{FA}} = 1$ ev/day.

KamLAND

Claudio Casentini PhD Thesis 2017

Burst discrimination - ξ parameter

$$\xi = \frac{m}{\Delta t}$$

m - burst (aka cluster) multiplicity, i.e. number of events in the coincidence window

 Δt - burst duration (time difference between the last and first trigger of each burst)

$$\Xi[\xi]_X = \int_0^{\overline{\xi}_X} \mathrm{PDF}_X^{bkg} \, d\xi + \int_{\overline{\xi}_X}^{\infty} \mathrm{PDF}_X^{sig+bkg}(D) \, d\xi$$

Distributions of pure background and background plus signal clusters in terms of Probability Density Functions (PDFs)

Closer source -> increased multiplicity -> better separation of signals and backgrounds

Casentini et. al (2017) <u>arXiv:1801.09062</u>

Improvements due to ξ parameter cut

No big loss in detection efficiencies η Big improvement in misidentification probability ζ at galactic distances (Large Magelanic Cloud)

Claudio Casentini PhD Thesis 2017

Improvements due to ξ parameter cut

Detector	M[kton]	E _{thr} [MeV]	ξ cut [Hz]	Gain	D [kpc]
Borexino	0.3	1	0.65	6.9	20
LVD	1	10	0.72	14.0	40
KamLAND	1	1	0.77	13.4	50

Claudio Casentini PhD Thesis 2017

IceCube Sensitivity

Trigger efficiency

IceCube in the network of 3
IceCube alone

Lutz Köpke, Alexander Fritz

Network Sensitivity

False Alarm Rate for detector networks

$$R_{joint} = \prod_{i=1}^{N} R_i (2t_{coin})^{N-1}$$

 R_{joint} - the joint False Alarm Rate , a number of accidental coincidence of detector signals in the network

$$R_{joint}^{GW} = R_{LG} \times R_{VG} \times 2t_{coin}$$

$$R_{joint}^{GW} = R_{LG} \times R_{VG} \times 2t_{coin} \qquad R_{joint}^{\nu} = R_{BX} \times R_{IC} \times R_{LVD} \times R_{KL} \times (2t_{coin})^3$$

Guidelines:

False Alarm Rate for neutrino detector networks

$$R_{joint} = \prod_{i=1}^{N} R_{i} (2t_{coin})^{N-1}$$

$$R_{joint} = R_{joint}^{GW} \times R_{joint}^{\nu} \times (2t_{coin})$$

$$R_{joint}^{\nu} = R_{BX} \times R_{IC} \times R_{LVD} \times R_{KL} \times (2t_{coin})^{3}$$

$$\frac{1 \ ev}{day}$$

False Alarm Rate requirement on the individual detector in the neutrino network:

- a) Network of 1 detector: $R_i^{\nu} = 1 \text{ ev/day}$
- b) Network of 2 detectors: $R_i^{\nu} = 66 \text{ ev/day}$
- c) Network of 3 detectors: R_i^{ν} = 265 ev/day
- d) Network of 4 detectors: R_i^{ν} = 525 ev/day

$$R_{joint}^{\nu} \approx \frac{1 \ ev}{day}$$

More detectors -> lower detection threshold

Data overlap: What data may we have in general?

Shared Data: What data have we analysed?

Background analysis

~ 4000 Time shifts allow to simulate 100-1000 years of background

Expected number of coincidences:

$$\lambda_{\text{coin}} = N_{\text{exp}}(\frac{\tau_{\text{coin}}^{N_{\text{exp}}-1}}{T_{\text{common}}^{N_{\text{exp}}}}) \prod_{i=1}^{N_{\text{exp}}} n_i$$

$N_{ m shifts}$	${ m lifetime_{background}}$	Expected N_{coin}	Found N_{coin}
3999	317yr	6 ± 2	4
3999	88yr	8 ± 3	9
3999	491yr	9 ± 3	7
3999	40yr	5 ± 2	7

TABLE 6.3: Background results of LVD-Borexino network.

The results obtained agree with the expectation->the goodness of the procedure

Coincidence search in networks

Expected number of coincidences:

$$\lambda_{coin} = N_{exp}(\frac{\tau_{coin}^{N_{exp}-1}}{T_{common}^{N_{exp}}}) \prod_{i=1}^{N_{exp}} n_i$$

Network composition	FAR_{joint}^{v-net}	BKG coinc. exp.	BKG coinc. found	BKG livetime
LVD+IceCube	1/24years	374 ± 19	390	5331 years
LVD+Borexino	1/24years	28 ± 6	27	656 years
Borexino+IceCube	1/24years	4116± 64	4147	7133 years

Coincidence search (GW +NU)

GW network + **LVD**:

Background study coincidences as expected

No real coincidences as expected

GW network + Borexino:

Background study coincidences as expected

No real coincidences as expected

GW network + IceCube:

Background study coincidences as expected

One real coincidence (due to a noisy behaviour in Virgo detector)

To further improve the sensitivity:

Lower the threshold Increase the common lifetime

CONCLUSIONS AND OUTLOOK

- Proof of Principle and methodology of the offline analysis Done 🗸
- Successful exchange of data and its analysis Done
- Redo the analysis with lower thresholds and more common life time in the new data format Coming up
- Low latency analysis Coming up
- Get ready for the new scientific run of GW detectors

CONCLUSIONS AND OUTLOOK

- Proof of Principle and methodology of the offline analysis Done 🗸
- Successful exchange of data and its analysis Done
- Redo the analysis with lower thresholds and more common life time in the new data format Coming up
- Low latency analysis Coming up
- Get ready for the new scientific run of GW detectors

OPEN COMMUNITY:
THE MORE THE MERRIER!

