# Into the void detecting extragalactic SNe

Sebastian Böser CCSNe workshop | Orsay | July 4<sup>th</sup> 2018





## IceCube's reach for SNe







## Detecting more supernovae in neutrinos

### IceCube

- sensitive to galactic SNe
  - expected rate: 1-2 SNe per century!

### Goal

routine SNe Detection





## SN detection in IceCube Gen2

### IceCube-Gen2

- new sensor technology
  - ▶ mDOM/WOM/dEgg → 3x Aeff
- total photo-effective area
  - ► ~ 38.400 DeepCore DOMs

Single-hit sensitivity scaling

- effective mass 26Mton
  - reach about 150-200kpc

### Nearest galaxies

LMC @ 50kpc

void

Andromeda M31 @780 kpc



Classic IceCube SN scheme doesn't work!



### IceCube DOM

- noise rate ~580Hz (pre-deadtime)
- coincidence chance for SN neutrinos: 2%





#### IceCube DOM

- noise rate ~580Hz (pre-deadtime)
- coincidence chance for SN neutrinos: 2%
- New sensors (A<sub>eff</sub> x 3)
  - coincidence chance for SN neutrinos: 6%
  - assume noise rate 1.5kHz
  - for 300ns window
    - random noise coincidences: 0.9Hz
    - S/N for 2 hit ~  $115 \cdot S/N$  for 1 hit

[similar study arXiv:1106.1937]





#### IceCube DOM

- noise rate ~580Hz (pre-deadtime)
- coincidence chance for SN neutrinos: 2%

### New sensors (A<sub>eff</sub> x 3)

- coincidence chance for SN neutrinos: 6%
- assume noise rate 1.5kHz
- for 300ns window
  - random noise coincidences: 0.9Hz
  - ► S/N for 2 hit ~ 115·S/N for 1 hit

[similar study arXiv:1106.1937]





#### IceCube DOM

- noise rate ~580Hz (pre-deadtime)
- coincidence chance for SN neutrinos: 2%

### New sensors (A<sub>eff</sub> x 3)

- coincidence chance for SN neutrinos: 6%
- assume noise rate 1.5kHz
- for 300ns window
  - random noise coincidences: 0.9Hz
  - ► S/N for 2 hit ~ 115·S/N for 1 hit

[similar study arXiv:1106.1937]

However...

- correlated noise
- muon and other backgrounds



- $\rightarrow$  simple scaling does not hold
- → need to be rejected



## The multi-PMT Optical Module (mDOM)





### DOM

- 13 inch diameter
- One 10 inch PMT facing downward

### mDOM

- 14 inch diameter
- 24 PMTs of 3 inch facing all directions

### Features

- $4\pi$  angular acceptance
- Directional sensitivity
- Larger photocathode
- Local concidences

neutrino



e-

photons



### IceCube-Gen2

- 10.000 mDOMs
  - each as individual detector
- Local coincidences
  - > 7% of events are detected in 2 or more PMTs
  - 99% of coincidences occurs in less then 10ns
    - Use to define
       trigger conditions





### IceCube-Gen2

- 10.000 mDOMs
  - each as individual detector
- Local coincidences
  - > 7% of events are detected in 2 or more PMTs
  - 99% of coincidences occurs in less then 10ns
    - Use to define
       trigger conditions



| SN models | (T. Janka | et al) |
|-----------|-----------|--------|
|-----------|-----------|--------|

- LS220 EoS
- Heavy (27M<sub>☉</sub>) and light (9.2M<sub>☉</sub>)



\*Detected events in 1 PMT underestimated due limited size of simulation volume





C. J. L. Mariscal, master thesis

Event trigger

- identify individual events
  - number of PMTs with hits n<sub>coinc</sub>
  - in time window  $\Delta t_{coinc}$





t

C. J. L. Mariscal, master thesis

Event trigger

- identify individual events
  - number of PMTs with hits n<sub>coinc</sub>
  - ▶ in time window ∆t<sub>coinc</sub>



Hit detected  $\rightarrow$  Open trigger  $\Delta t_{coin}$ 

 $n_{\text{coin}}\text{-}1$  more hits detected

Triggered event!





### Event trigger

- identify individual events
  - number of PMTs with hits n<sub>coinc</sub>
  - ► in time window  $\Delta t_{coinc}$

### SN Trigger

- identify neutrino bursts
  - number of modules with local coincident N<sub>v</sub>
  - ► in time window  $\Delta t_{SN} = 10s$





### Event trigger

- identify individual events
  - number of PMTs with hits n<sub>coinc</sub>
  - ► in time window  $\Delta t_{coinc}$

### SN Trigger

- identify neutrino bursts
  - number of modules with local coincident N<sub>v</sub>
  - ► in time window  $\Delta t_{SN} = 10s$





### Fake event sources

- Internal (PMT) dark noise
  - f<sub>N</sub> = 50 Hz / PMT (1.2 kHz / mDOM)
- Radioactive decays
  - activity from measurements of glass samples
  - coincidences from detailed GEANT simulation
- Solar neutrinos
  - dominated by 8B flux (Φ<sub>νe</sub>=1.7 ·10<sup>6</sup> cm<sup>·2</sup> s<sup>·1</sup>)





10<sup>8</sup>

10<sup>5</sup>

10<sup>2</sup>

Rate (Hz)

 $10^{-4}$ 

10-7

1



Solar neutrinos

Random noise

Decays



### Adjust $N_{\nu}$ and $n_{\text{coin}}$ for

- SN detection range
- Fake SN rate
  - SN trigger from non-SNv (noise/BG) events

| <i>n</i> <sub>coin</sub> | $N_{ u}$ | False SN rate ( $year^{-1}$ ) | $1 \ \sigma$ detectio<br>Heavy SN | n distance (kpc)<br>Light SN |
|--------------------------|----------|-------------------------------|-----------------------------------|------------------------------|
| 5                        | 36       | 1.130                         | 209.6                             | 129.4                        |
|                          | 40       | 0.010                         | 199.2                             | 122.9                        |
|                          | 42       | <0.001                        | 194.5                             | 120.0                        |
| 6                        | 18       | 1.082                         | 205.1                             | 122.5                        |
|                          | 20       | 0.035                         | 195.0                             | 116.4                        |
|                          | 22       | < 0.001                       | 186.2                             | 111.2                        |

- More than 1 fake detection per year
- $\sim 1$  fake detection in 100 years
- Less than 1 fake detection in 100 years

### SN detection range

- $n_{coin} = 40, N_{\nu} = 5$
- 2-3 SNe / 100yrs
- 1 fake / 100 yrs





### Adjust $N_{\nu}$ and $n_{\text{coin}}$ for

- SN detection range
- Fake SN rate
  - SN trigger from non-SNv (noise/BG) events

| $n_{\rm coin}$ | $N_{ u}$ | False SN rate (year $^{-1}$ ) | $1~\sigma$ detection Heavy SN | on distance (kpc)<br>Light SN |
|----------------|----------|-------------------------------|-------------------------------|-------------------------------|
| 5              | 36       | 1.130                         | 209.6                         | 129.4                         |
|                | 40       | 0.010                         | 199.2                         | 122.9                         |
|                | 42       | <0.001                        | 194.5                         | 120.0                         |
| 6              | 18       | 1.082                         | 205.1                         | 122.5                         |
|                | 20       | 0.035                         | 195.0                         | 116.4                         |
|                | 22       | < 0.001                       | 186.2                         | 111.2                         |

More than 1 fake detection per year

- $\sim$  1 fake detection in 100 years
- Less than 1 fake detection in 100 years

### **Reduced noise**

- low-radioactivity glass (100x less <sup>232</sup>Th)
- SN detection range
  - $n_{coin} = 5, N_{\nu} = 6$
  - **4-6 SNe / 100yrs**
  - 6 fake / 100 yrs







## **Detecting** more **supernovae** in neutrinos

### IceCube

- sensitive to galactic SNe
  - expected rate: 1-2 SNe per century!

### Goal

routine SNe Detection

use coincident hits





## **Detecting** more **supernovae** in neutrinos

90

### IceCube

- sensitive to galactic SNe
  - expected rate: 1-2 SNe per century!

### Goal

routine SNe Detectionuse coincident hits

shopping list 10 Mton effective Volume 10 MeV energy threshold





## MICA — Megaton Ice Cherenkov Array

### Geometry

- 127 string
- 2150-2450m depth (clearest ice)
- 300 optical sensors / string ( one per meter)







South Pole ice cap

- temperature profile -55°C(top) to -10°C (bottom)
- very low radioactivity
  - ► A ~ Ø(Bq/m<sup>3</sup>)
- dust layers







South Pole ice cap

- temperature profile -55°C(top) to -10°C (bottom)
- very low radioactivity
  - A ~  $\emptyset(Bq/m^3)$
- dust layers







Light propagation

- scattering / absorption
  - optimize for photon yield



South Pole ice cap

- temperature profile -55°C(top) to -10°C (bottom)
- very low radioactivity
  - A ~  $\emptyset(Bq/m^3)$
- dust layers







Light propagation

- scattering / absorption
  - optimize for photon yield





South Pole ice cap

- temperature profile -55°C(top) to -10°C (bottom)
- very low radioactivity
  - A ~ Ø(Bq/m<sup>3</sup>)
- dust layers
  - (e.g from volcanic ash)



- Light propagation
  - scattering / absorption
    - optimize for photon yield
- Alternative location: 750-1050m
  - absorption  $\lambda_{abs} = 350m$
  - scattering  $\lambda_{scat} = 0.3m$





## MICA — Megaton Ice Cherenkov Array

SNe trigger

• require  $N_{\nu} = 3$ ,  $\Delta t = 10s$ 

$$R_{\rm SN}^{\rm fake} = f_{\rm noise} \left( 1 - P_{\rm CDF} (N_{\nu} - 2, \mu = f_{\rm noise} \Delta t_{\rm SN}) \right)$$

Backgrounds

less than 1 fake SN trigger / year

less than 1mHz fake v-triggers





- require 5 hits in  $\Delta t_{coinc}$
- Sensor self noise  $f_{\text{module}}$ 
  - fake trigger rate fnoise
    - need to reject noise hits !

| <b>f</b> <sub>module</sub> | f <sub>noise</sub> | $\Delta t_{coinc}$ |
|----------------------------|--------------------|--------------------|
| 500 Hz                     | 19 MHz             | 1000ns             |
| 10 Hz                      | 247 Hz             | 1000ns             |
| target                     | 0.001 Hz           | 1500ns             |



- require 5 hits in  $\Delta t_{coinc}$
- Sensor self noise  $f_{\text{module}}$ 
  - fake trigger rate fnoise
    - need to reject noise hits !

Radius-time cleaning

- exploit local coincidences
  - between modules (c.f mDOM)

| f <sub>module</sub> | f <sub>noise</sub> | $\Delta t_{coinc}$ |
|---------------------|--------------------|--------------------|
| 500 Hz              | 19 MHz             | 1000ns             |
| 10 Hz               | 247 Hz             | 1000ns             |
| target              | 0.001 Hz           | 1500ns             |







- require 5 hits in Δt<sub>coinc</sub>
- Sensor self noise fmodule
  - fake trigger rate fnoise
    - need to reject noise hits !

### Radius-time cleaning

- exploit local coincidences
  - between modules (c.f mDOM)

Phase-space cut

- exploit photon propagation
  - reject too slow and too fast hits w.r.t reconstructed vertex
  - adjust  $t_{coinc}$  for  $f_{noise} = 1 mHz$

| f <sub>module</sub> | f <sub>noise</sub> | $\Delta t_{coinc}$ |
|---------------------|--------------------|--------------------|
| 500 Hz              | 19 MHz             | 1000ns             |
| 10 Hz               | 247 Hz             | 1000ns             |
| target              | 0.001 Hz           | 1500ns             |





- require 5 hits in  $\Delta t_{coinc}$
- Sensor self noise  $f_{module}$ 
  - fake trigger rate fnoise
    - need to reject noise hits !

### Radius-time cleaning

- exploit local coincidences
  - between modules (c.f mDOM)

Phase-space cut

- exploit photon propagation
  - reject too slow and too fast hits w.r.t reconstructed vertex
  - ► adjust t<sub>coinc</sub> for f<sub>noise</sub> = 1mHz

| f <sub>module</sub> | f <sub>noise</sub> | $\Delta t_{coinc}$ |
|---------------------|--------------------|--------------------|
| 500 Hz              | 19 MHz             | 1000ns             |
| 10 Hz               | 247 Hz             | 1000ns             |
| target              | 0.001 Hz           | 1500ns             |





## MICA sensors and self noise



Sensor requirements

- need ~100cm<sup>2</sup> eff. photon sensitive area per meter of instrumented string
- at a self noise rate of < 50Hz per meter</p>







# Interlude: The Wavelength-shifting Optical Module (WOM)



# Wavelength-shifting Optical Module (WOM)

Basic concept

- Wavelength shifters (WLS)
  - concentrate light

Features

- Iarge collection area
- better UV sensitivity
- Iow noise rate (few Hz)
- cost effective





## **WOM manufacturing**





## Wavelength-shifting module (WOM)

### Features

- Iarge collection area
  - better UV sensitivity
- time resolution
  - ► σ(t) ~ 10ns
- Iow noise rate ?

freezer test

























WOM & Abalone — 24







WOM & Abalone — 25

G|U

### Measurements

- Long-duration gamma spectroscopy (4 samples)
- Neutron-activation analysis (1 sample)
  - ~150 Bq/g <sup>238</sup>U in Quartz tubes from Nautilus!

### Alternatives

- Heraeus quartz
  - ► typical < 10 Hz/tube</p>
- SUP310
  - ► flame fused
  - ► down to < 200nm
- HSQ/HLQ
  - electrically fused
  - ► down to ~250nm

# Heraeus

| <b>mBq</b> /kg | 226-Ra  | 228-Th | 228-Ra | 40-K   | Price /<br>tube [€] |
|----------------|---------|--------|--------|--------|---------------------|
| HSQ 300        | 480±30  | < 86   | < 90   | < 200  | < 1400              |
| SUP 310        | < 29    | < 46   | < 43   | < 100  | < 6500              |
| RQ200          | 350±120 | < 270  | < 370  | < 1920 | ?                   |
| RQ500          | 520± 80 | < 360  | < 340  | < 1150 | ?                   |

Compatible with Heraeus data







## **WOM Summary**

Passive light-concentration scheme

WLS coated quartz tubes

averaged two-sided collection efficiency over 90-cm tube is 41 ± 1.7% (reproducible!)

Noise rate is 75Hz/PMT

- 150 Hz per module
  - A<sub>eff</sub> ~ 3HQE DOMs (similar to mDOM)

### Simple 3"PMT + 7cmØ tube setup

- improvement in SNR ~ 10 w.r.t to PMT alone
  - can be improved using adiabatic light guide



## **WOM Summary**

Passive light-concentration scheme

- WLS coated quartz tubes
  - averaged two-sided collection efficiency over 90-cm tube is 41 ± 1.7% (reproducible!)

Noise rate is 75Hz/PMT

- 150 Hz per module
  - A<sub>eff</sub> ~ 3HQE DOMs (similar to mDOM)

### Simple 3"PMT + 7cmØ tube setup

- improvement in SNR ~ 10 w.r.t to PMT alone
  - can be improved using adiabatic light guide





## Atmospheric backgrounds

### Atmospheric muons

- R(µ) ~ 230Hz
  - easily recognizable
- photon diffusion time  $\sim 7\mu$ s
  - deadtime 0.16%

### Atmospheric neutrinos

- $R(\overline{\nu}_e) = 0.4 \text{mHz}$ 
  - ▶ v<sub>e</sub> suppressed (only ES, no IBD)
- Michel electrons from  $\nu_{\mu}$ 
  - $\nu_{\mu} + N \rightarrow \mu_{invisible} \rightarrow e + \nu_{\mu}$
  - R(Michel) ~ 3mHz
  - need to veto showers





## The shallow ice

Ice properties at 750-1050m

- absorption  $\lambda_a = 350$ m
- scattering  $\lambda_s = 0.3m$ 
  - calculate photon yield analytically

Photon diffusion model

- easily get >10Mton...
- ... but no reconstruction

Backgrounds

- atmo. µ deadtime = 14%
  - more spallation...
- solar rejection
  - only by energy  $\rightarrow$  tough





## Solar background

### Solar flux

- several generation cycles
- most important
  - ▶ <sup>8</sup>B flux with  $E^{max}(\nu_e) = 15 \text{ MeV}$
- only  $v_e$ , no  $\overline{v}_e$ 
  - only elastic scattering (ES)
  - ▶ R(<sup>8</sup>B) = 30mHz

### **Rejection options**

energy

- not sufficient
- direction (ES mostly forward)
  - cut cone with  $\sigma(\psi) = 30^{\circ}$
  - ▶ R(<sup>8</sup>B) = 1mHz





|        | solar $v_{e}$ | SNe v |
|--------|---------------|-------|
| 5 hits | 30mHz         | 100 % |
| 6 hits | 18mHz         | 85 %  |
| 7 hits | 10mHz         | 69 %  |

30





- direct production of unstable isotopes
  - ▶ mostly short-lived ( $\rightarrow \mu$ s)
- neutron/pion captures
  - ► long-lived isotopes (→ seconds)





\* Caveat: air in ice not included yet







### Likelihood approach

- time relative to muon
  - many short-lived isotopes
- distance to muon track
  - neutrons propagate ~ meters
- depth in detector
  - flux decreases to bottom

### Additional option

- isotopes (n,π,...) are generated in secondary cascades
  - identify showers along track







E. Lohfink, master thesis

### Likelihood approach

- time relative to muon
  - many short-lived isotopes
- distance to muon track
  - neutrons propagate ~ meters
- depth in detector
  - flux decreases to bottom
- → 85% signal at 1mHz spallation

### Additional option

- isotopes (n,π,...) are generated in secondary cascades
  - identify showers along track





## Supernova rate estimates

Supernova rate (SNR)

- cosmological SNR
  - proportional to galaxy blue luminosity

Star formation rate (SFR)

- heavy stars short-lived
  - ► SNR ∝ SFR
- cosmic SFR
  - twice as high as cosmic SNR
- many missed (e.g dark) SNe?





## Supernova rate estimates

Supernova rate (SNR)

- cosmological SNR
  - proportional to galaxy blue luminosity

Star formation rate (SFR)

- heavy stars short-lived
  - ► SNR ∝ SFR
- cosmic SFR
  - twice as high as cosmic SNR
- many missed (e.g dark) SNe?





## Black hole vs. neutron star



## Supernova detection probability





## Are we there?

### SNe detection range

- collapse to neutron star
  - reach 6-9 Mpc
- collapse to black hole
  - ▶ reach 25 Mpc

### SNe detection rate

- from blue luminosity
  - min. 1 SNe every 2 years
- from star formation rate
  - 2-4 SNe per year
- direct BH formation
  - additional 3-4 SNe per year





## **Physics with SN neutrinos**

M. Jung, master thesis

### Astrophysics

- solve SNe rate puzzle
- are there dark SNe?

**...** 

### Particle Physics

- neutrino oscillations
- neutrino mass ordering
- neutrino mass?

**...** 







# **Physics with SN neutrinos**

M. Jung, master thesis

 $\Delta T = D/2 (m_{\nu}/E_{\nu})^{2}$ 

### Astrophysics

- solve SNe rate puzzle
- are there dark SNe?

••••

### Particle Physics

- neutrino oscillations
- neutrino mass ordering
- neutrino mass?

**.**...

### Need to account for

- start time resolution (1st hit)
- trigger efficiency (simulation)
- energy resolution (number of hits)
- backgrounds (uniform, 1mHz)



time [s]  $m_{\overline{
u}_e} = 0\,\mathrm{eV}$ 

6

4

2

systematics uncertainty in

2

4

detection time [s]

 $m_{\overline{\nu}_e} = 2 \,\mathrm{eV}$ 

- light curve
- ▶ spectrum
- → not yet included

0





0.040

0.035

0.030

0.025 <u>구</u>

0.020 g

0.015 8

0.010

0.005

0.000

2e

8

6

## Neutrino mass sensitivty

Single SN analysis

- likelihood approach ( $E_{\nu,}t_{\nu}$ )
- sensitivity is highest mass which gives 90% CL to reconstruct non-zero mass







## Neutrino mass sensitivty

### Single SN analysis

- likelihood approach ( $E_{\nu,}t_{\nu}$ )
- sensitivity is highest mass which gives 90% CL to reconstruct non-zero mass

MICA sensitivity

- draw realistic SN distances
- combine SNe information by minimizing LLH sum

$$\sum_{\mathrm{SNe}} \mathscr{L}\left(E_i, t_i \,|\, m_\nu\right)$$





## Neutrino mass sensitivty

Single SN analysis

- likelihood approach ( $E_{\nu}, t_{\nu}$ )
- sensitivity is highest mass which gives 90% CL to reconstruct non-zero mass

MICA sensitivity

- draw realistic SN distances
- combine SNe information by minimizing LLH sum

$$\sum_{\mathrm{SNe}} \mathscr{L}\left(E_i, t_i \,|\, m_{\nu}\right)$$

Results from ensemble fit

- m<sub>v</sub> ≤ 0.35eV
  - ▶ in up to 7.5 years runtime (30SNe)
- mostly limited by start time resolution

🜔 ICEC







## Summary

- IceCube's chances of detecting SNe in MeV neutrinos mostly limited by
  - "small" effective mass of detector
  - low number of SNe in local environment
    - → need O(10Mton) detector = MICA

Background rejection is critical
very low-noise sensors required
spallation background can be rejected
solar neutrino still require some effort

→ have not used sub-threshold events yet

However, we may not be so far from...



## Summary

- IceCube's chances of detecting SNe in MeV neutrinos mostly limited by
  - "small" effective mass of detector
  - low number of SNe in local environment
    - → need O(10Mton) detector = MICA

Background rejection is critical
very low-noise sensors required
spallation background can be rejected
solar neutrino still require some effort

→ have not used sub-threshold events yet

However, we may not be so far from...

# Thank you!