REPRISES F2F meeting CC IN2P3, Lyon, June 21, 2018

Exact Lookup Tables for the Evaluation of Trigonometric and Hyperbolic Functions

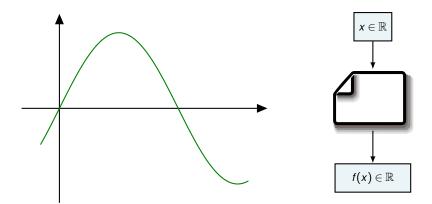
Hugues de Lassus Saint-Geniès

David Defour

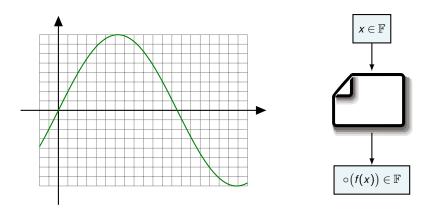
Guillaume Revy

Univ. Perpignan Via Domitia, DALI, Perpignan LIRMM, Univ. Montpellier, CNRS (UMR 5506), Montpellier

From a function to its implementation

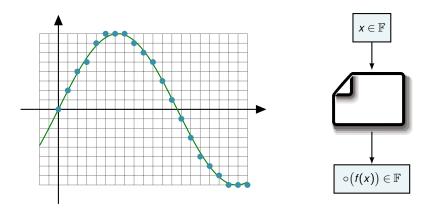


From a function to its implementation



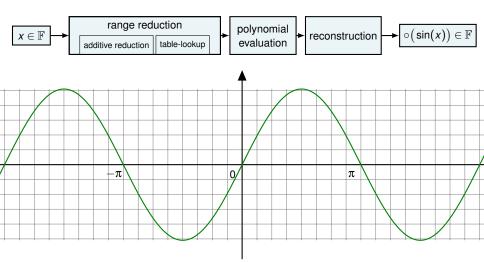
Input and output are represented using finite precision arithmetic

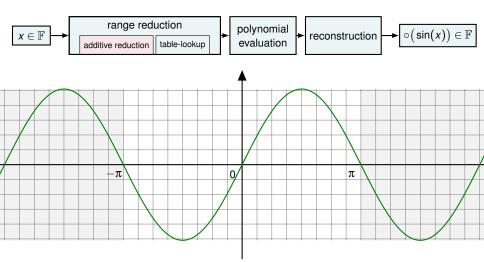
From a function to its implementation

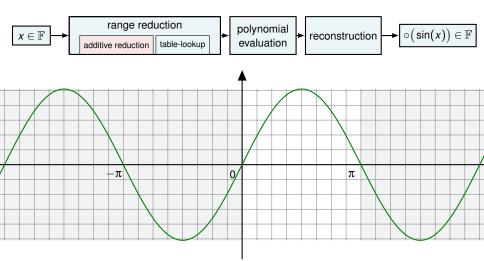


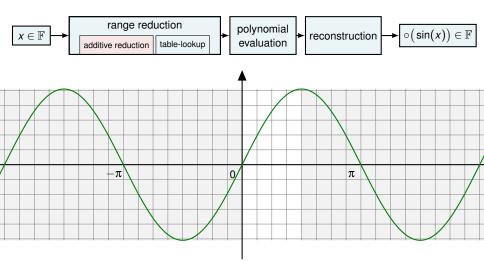
Input and output are represented using finite precision arithmetic

• the computed value is an approximation of the function f(x)

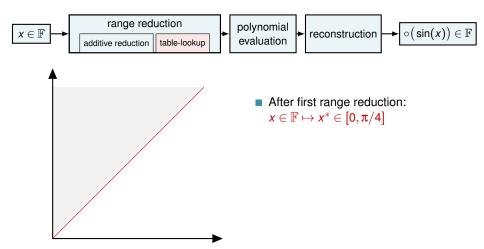


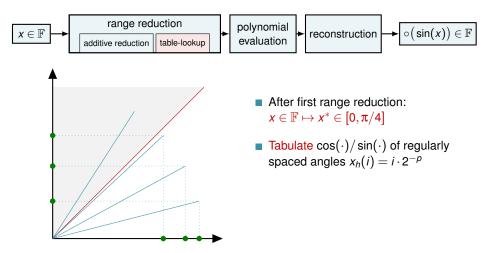


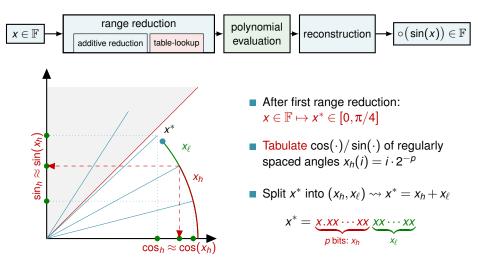


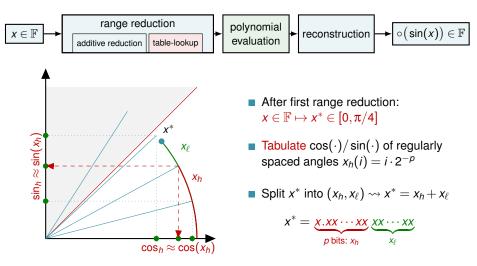






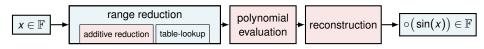






Retrieve sine result using: $\sin(x^*) \approx \frac{\sin_h \otimes \cos(x_\ell) \oplus \cos_h \otimes \sin(x_\ell)}{\cos_h \otimes \sin(x_\ell)}$

Sources of error in the classical method

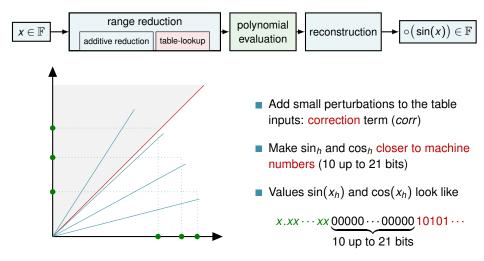


In this process, errors appear:

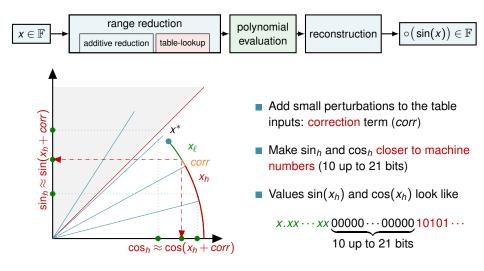
- in x^* , because of the additive range reduction
- in sin_h and cos_h, which are rounded approximations
- in $sin(x_{\ell})$ and $cos(x_{\ell})$, computed by polynomial evaluations
- during the reconstruction process

Drawback: additional bits in computation steps for accuracy purposes

Reducing the error on the tabulated values (Gal's method)

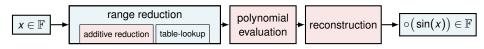


Reducing the error on the tabulated values (Gal's method)



Retrieve sine result using: $sin(x^*) \approx sin_h \otimes cos(x_\ell - corr) \oplus cos_h \otimes sin(x_\ell - corr)$

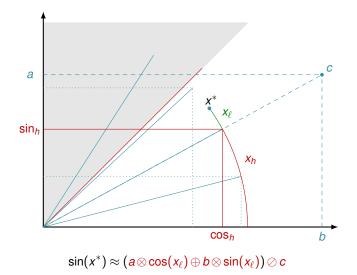
Main objective: build exact lookup tables



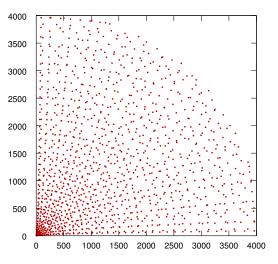
Key idea: remove the error on tabulated values

- tables should store in exact values on machine numbers
- it saves bits
- it concentrates the error on subsequent steps
- it makes the reconstruction step easier

What if we had rational numbers to tabulate?



We've been having them since Euclid (pprox 300 BC)



Each dot represents a primitive Pythagorean triple (PPT):

 $\exists (\mathbf{a},\mathbf{b},\mathbf{c}) \in \mathbb{N}^{\mathbf{3}}$ coprime | $a^2 + b^2 = c^2$

$$\Rightarrow \exists x \in \left[0, \frac{\pi}{2}\right] \mid$$
$$\sin(\mathbf{x}) = \frac{\mathbf{a}}{\mathbf{c}} \quad \text{and} \quad \cos(\mathbf{x}) = \frac{\mathbf{b}}{\mathbf{c}}$$

Primitive Pythagorean triples (PPT) generation

One easy way: ternary-trees with root (3,4,5)

3 linear relationships \rightarrow 3 children/node, e.g.

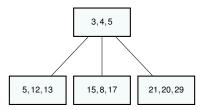
$$\begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3 \end{pmatrix}, \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ -2 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$

Primitive Pythagorean triples (PPT) generation

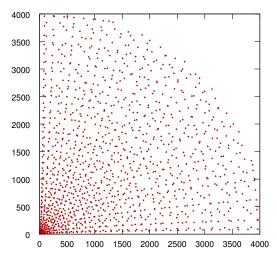
One easy way: ternary-trees with root (3,4,5)

3 linear relationships \rightarrow 3 children/node, e.g.

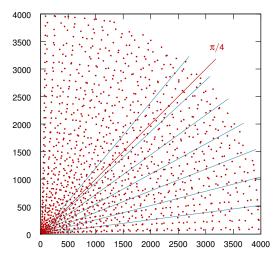
$$\begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3 \end{pmatrix}, \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ -2 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$



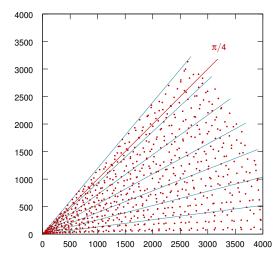
Primitive Pythagorean triples with $c \leq 2^{12}$



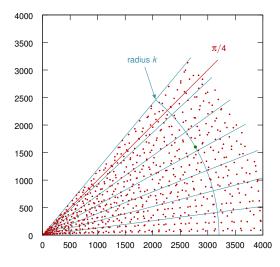
Primitive Pythagorean triples with $c \le 2^{12}$



Primitive Pythagorean triples with $c \le 2^{12}$

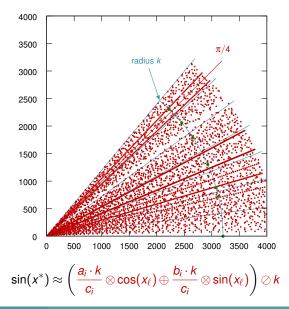


What are "good" Pythagorean triples?

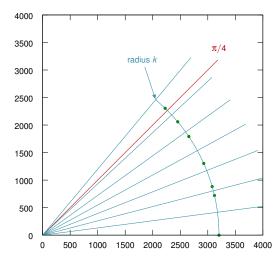


 $\sin(x^*) \approx (a_i \otimes \cos(x_\ell) \oplus b_i \otimes \sin(x_\ell)) \oslash c_i$

What are "good" Pythagorean triples?



What are "good" Pythagorean triples?



 $\sin(x^*) \approx A_i \otimes [\cos(x_\ell)/k] \oplus B_i \otimes [\sin(x_\ell)/k]$

Actual use of Pythagorean triples

For each table entry *i*:

► store integers
$$A_i = \frac{a_i}{c_i} \cdot k$$
 and $B_i = \frac{b_i}{c_i} \cdot k$ $(A_i, B_i \in \mathbb{F})$

Actual use of Pythagorean triples

For each table entry *i*:

► store integers
$$A_i = \frac{a_i}{c_i} \cdot k$$
 and $B_i = \frac{b_i}{c_i} \cdot k$ $(A_i, B_i \in \mathbb{F})$

Incorporate ¹/_k into polynomial approximants:

$$rac{\sin(x_\ell)}{k}$$
 and $rac{\cos(x_\ell)}{k}$

Remark: k should be a small least common multiple (LCM) of any combination of one hypotenuse c per table entry

▶ small \rightarrow each A_i and B_i fits in a machine word

Table generation algorithm

Input

p: table index size

Algorithm steps

- 1: *n* ← 4
- 2: repeat
- 3: Generate all PPTs (a, b, c) such that $c \leq 2^n$.
- 4: Search for the LCM *k* among all generated hypotenuses *c*.
- 5: $n \leftarrow n+1$
- 6: **until** such a *k* is found
- 7: Build tabulated values (A, B, corr) for every entry.

Table example for p = 4

Index	$S_{h}\left(A_{i} ight)$	$C_{h}\left(B_{i} ight)$
0	0	5525
1	235	5520
2	612	5491
3	1036	5427
4	1360	5355
5	1547	5304
6	2044	5133

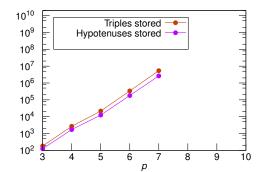
Computed value k = 5525

- $612/5525 = 0.1107 \cdots \approx \cos(2 \cdot 2^{-4})$
- ▶ $5491/5525 = 0.9938 \cdots \approx \sin(2 \cdot 2^{-4})$

Exhaustive search

Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz (32 cores) 125 GB RAM

p	k _{min}	n	Time (s)
3	725	10	≪ 1
4	10625	14	0.01
5	130645	17	0.14
6	1676285	21	6
7	32846125	25	1000



Exhaustive search

Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz (32 cores) 125 GB RAM

10¹⁰ F.

				10 ⁹	Ē	Н	Tri vpoteni	ples sto uses sto	ored ·
р	k _{min}	n	Time (s)	108	Ē			by for T	
3	725	10	≪ 1	10 ⁷	F				
4	10625	14	0.01	10 ⁶	F				
5	130645	17	0.14	10 ⁵	F				
6	1676285	21	6	10 ⁴	F		X		
7	32846125	25	1000	10 ³	E				
				10 ²	Ľ				
				10	3	4	5	6	7

Bottlenecks = searching the LCM and memory

Finding k for a 10-bit addressed table is desperate with this exhaustive technique

• our estimations show that $n = \lceil \log_2(k_{min}) \rceil \approx 37$

р

8

9

10

Heuristic search

p	k _{min}	Prime Factorization	Triples		
5	130645	5 · 17 · 29 · 53	21588		
6	1676285	5 · 13 · 17 · 37 · 41	338660		
7	32846125	$5^3 \cdot 13 \cdot 17 \cdot 29 \cdot 41$	5365290		

Observation: *k* is always a product of *small* Pythagorean primes

Pythagorean primes less than 70: {5, 13, 17, 29, 37, 41, 53, 61}

Heuristic search

p	k _{min}	Prime Factorization	Triples		
5	130645	5 · 17 · 29 · 53	21588		
6	1676285	5 · 13 · 17 · 37 · 41	338660		
7	32846125	$5^3 \cdot 13 \cdot 17 \cdot 29 \cdot 41$	5365290		

Observation: k is always a product of *small* Pythagorean primes

- Pythagorean primes less than 70: {5, 13, 17, 29, 37, 41, 53, 61}
- During the generation, only keep triples with hypotenuse

$$c = \prod_{i} p[i]^{r_i} \quad \text{with} \quad \begin{cases} r_i = 0 \text{ or } 1 & \text{if } p[i] \neq 5\\ r_i \in \mathbb{N} & \text{if } p[i] = 5 \end{cases}$$

Heuristic search results

				10 ⁴	-[Нур		s stored s stored			-	-
p	k _{min}	n	Time (s)	10 ³	E			-				_
6	1676285	21	0.12		F		-					-
7	32846125	25	0.88	10 ²	Ė,							_
8	243061325	28	4.63		۴.		-	-	•	•		
9	12882250225	34	269	10 ¹	-							_
10	370668520625	39	8563		Ē							
				10 ⁰	L 3	4	5	6	7	8	9	10
					-			, F	0	-	-	

- **Same results** as the exhaustive search for $p \le 7$
- Exponentially better than exhaustive search with respect to p
- New bottleneck: heuristic test over $\approx 2^n$ hypotenuses

Comparisons with other table-based methods

- Correct rounding in double precision : 2-step Ziv strategy
 - quick phase accurate to 2⁻⁶⁶
 - slow phase accurate to 2⁻¹⁵⁰
- Table index size p = 10 bits
- Estimate memory accesses (MA), FLOPs, and table size

Method	Table size (B)	Quick phase	Slow phase		
Tang	38640	4 MA + 64 FLOP	6 MA + 241 FLOP		
Gal	57960	3 MA + 53 FLOP	9 MA + 268 FLOP		
Proposed	32200	3 MA + 53 FLOP	5 MA + 148 FLOP		

- Table-size 17% lower than Tang's, 45% lower than Gal's
- Quick phase 25% + 17% less expensive than Tang's, same as Gal's
- Slow phase 17% + 39% less expensive than Tang's, 45% + 45% than Gal's

Conclusion and Perspectives

Contribution

- a new algorithm for table-based range reductions, for trigonometric functions
 - using error-free values (integers)
 - concentrating the error on the other steps
 - estimated gains of 45% in table-size, FLOPs and memory accesses for correctly-rounded double precision implementations
- a prototype able to pre-compute tables up to 10 indexing bits
- an extension to hyperbolic functions

Perspectives

- evaluation of accuracy and performance in available libraries
- integration in a full code-generation chain (MetaLibm)