
L.	
 Arrabito1,	
 J.	
 Bregeon1,	
 	

P.	
 Langlois2,	
 D.	
 Parello2,	
 G.	
 Revy2

1LUPM CNRS-IN2P3 France
2DALI UPVD-LIRMM France

Preliminary	
 work	
 on	
 corsika	

op@miza@on	

F2F REPRISES, 21st Juin 2018, CC-IN2P3 Villeurbanne
1	

Plan

•  Brief introduction to corsika
•  Corsika profiling
•  Compiler optimization tests
•  First manual optimizations
•  Next steps and conclusions

2	

Introduction to corsika

•  Detailed simulation of showers initiated by high energy cosmic
rays

•  Initially developed for the Kaskade experiment (since 1990 at
KIT)

•  Today is widely used by several ‘cosmic rays’ communities
•  900 users from 57 countries
•  > 1900 citations
•  https://www.ikp.kit.edu/corsika/

3	

corsika for CTA

4	

The software

•  Main program (Fortran)
–  A single source of about 70k lines of code

•  Customized external packages for electromagnetic and hadron
interactions (Fortran)
–  EGS4, FLUKA, UrQMD, GHEISHA, QGSJET, EPOS-LHC,

DPMJET, SIBYLL
•  IACT/atmo package (written in C)

–  Extension to corsika to implement arrays of Cherenkov telescopes
–  Use of external atmospheric models
–  Propagation of light in the atmosphere with refraction

•  Total of > 105 lines of code
•  Many person-years of development
•  Project of full re-writing in modular C++ just started

–  Open source project

5	

Motivations to improve corsika
performances

•  MC simulations in CTA are the most CPU consuming task
–  70% of CPU spent in corsika (shower development)
–  30% of CPU spent in telescope simulation

•  Massive MC simulations run on the grid since 7 years to
assess CTA design

•  During CTA operations MC simulations will be periodically run
to calculate the Instrument Response Functions

6	

•  6000-­‐8000	
 concurrent	
 jobs	
 	

•  >	
 125	
 M	
 HS06	
 CPU	
 hours	

since	
 Jan.	
 2018	

Running jobs by site since Jan. 2018 8000	
 jobs	

Corsika profiling with Linux perf

•  Profiler tool for Linux based systems
•  Used the sampling method (perf record/report), based on the

‘cycles’ event and using the call graph option
•  Running on a dedicated server

–  x86_64
–  Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
–  CentOS Linux release 7.4.1708 (Core)
–  Compiled with: -O2 –funroll-loops

•  Use ‘standard’ corsika input parameters (the same as in
production)

7	

Profiling results

•  90% of CPU in CERENK
subroutine and below
–  Cherenkov photon production
–  Part of corsika ‘core’

•  50% of CPU in raybnd function
and below
–  Propagation of cherenkov

photon in the atmosphere with
refraction correction

–  Part of IACT/atmo package

8	

Linux	
 perf	
 +	
 FlameGraph	
 	

•  Compatible results obtained with different profiling tools
–  https://poormansprofiler.org/ (based on gdb)
–  valgrind

Profiling results

•  Most of the CPU spent in mathematical functions and

atmospheric/refraction profile interpolation
–  35% exp (used for atmospheric profile interpolation)
–  35% sincos/asin
–  20% binary search for refraction tables interpolation

•  Very frequently called, once per photon bunch
–  About 160k photon bunches per shower (in our tests)

•  Photon bunches are treated independently
–  Possible vectorization?

•  Choose to start optimizing the raybnd function 9	

exp	
 binary	
 search	

•  Zoom on raybnd (50% CPU)

exp	
 asin/sincos	

Optimization strategy

•  Test automatic optimizations by compiler
–  We did not expect significant gains

•  Apply manual transformations
–  At algorithmic level

•  e.g. Testing different atmospheric interpolation schemes
–  Code refactoring
–  Exploiting the micro-architecture capabilities

•  Apply vectorization to the raybnd function to treat multiple
bunches at once

•  Apply the vectorization at the mathematical function level (using
dedicated libraries)

•  Want to obtain identical numerical results with respect to a
reference version

–  Reduce precision format whenever possible by means of automatic
tools

10	

Compiler optimization tests

•  Preparatory work
–  Reorganise corsika/sim_telarray packaging (D. Parello)
–  Allowing to easily test different compilation options and code

transformations
•  Combine different compilation options

–  Standard options:
•  -O1, -O2, -O3

–  Loop optimizations options:
•  -ftree-loop-if-convert -ftree-loop-distribution -ftree-loop-distribute-

patterns -ftree-loop-im -ftree-vectorize -funroll-loops -funroll-all-
loops -floop-nest-optimize

–  Arithmetics expression optimization (it may affect numerical results):
•  -ffast-math

–  Other options
•  -mavx, -mavx2, -flto

11	

Compiler optimization tests

•  Running conditions
–  Same as for profiling
–  Using keep-seeds option for random number generation to obtain

reproductible runs
–  Run duration: about 8 minutes
–  Running on a dedicated server

•  Performances compared with a reference version compiled
with ‘standard’ options
–  -O2 –funroll-loops

•  Simple performance measurements with ‘perf stat’: number of
cycles, number of instructions, elapsed time, etc.

•  Checking result reproducibility
–  Using a dedicated program to print the coordinates of first 10

photons of each bunch

12	

First results of compiler optimizations
tests

•  3072 option combinations tested
–  No speed-up obtained beyond a factor 1.06

•  Using ffast-math impacts numerical results (as expected)
–  Found that small differences in numerical results may induce

different calls to random number generators leading to very
different final results

13	

Optimization strategy

•  Test automatic optimizations by compiler
–  We don’t expect significant gains

•  Apply manual transformations
–  At algorithmic level

•  e.g. Testing different atmospheric interpolation schemes
–  Code refactoring
–  Exploiting the micro-architecture capabilities

•  Apply vectorization to the raybnd function to treat multiple
bunches at once

•  Apply the vectorization at the mathematical function level (using
dedicated libraries)

•  Want to obtain identical numerical results with respect to a
reference version

–  Reduce precision format whenever possible by means of automatic
tools

14	

Atmospheric profiles and interpolation

15	

•  Generation and propagation of Cherenkov photons require a precise
description of the atmosphere in terms of density, thickness,
refraction index

•  The atmosphere is built from about 55 layers, and then interpolations
are used to get precise values at various altitudes

•  35% of CPU time in raybnd spent in computing linear interpolation to
evaluate log(density), log(thickness), log(refidx) at various altitudes
–  Implies calls to exp to obtain density, thickness, refraction index values

density	
 profile	
 log(density)	
 profile	

Current interpolation schemes

•  Standard interpolation
–  It makes use of binary search algorithm to find the the 2 closest

points in the look-up table
•  Fast interpolation

–  Enabled by default
–  Use pre-calculated fine-grained tables with equidistant steps in

altitude
•  No need anymore of binary search to find the 2 closest points

–  Implemented for atmospheric tables but not for refraction tables

16	

Interpolation schemes

•  Comparing the 2 schemes (standard and fast)
–  Fast interpolation gives a speed-up of 1.15
–  Small differences found looking at the corsika output (photon

coordinates)
•  x, y at micron level
•  Arrival time at < 0.1 ps level
•  No angular differences

•  Started the extension of fast interpolation to refraction tables
–  No significant gain for the moment (though very preliminary)

•  We’ve confirmed that interpolation algorithm has an impact on
performances

•  Other algorithms may be implemented in future (quadratic, cubic-
splines)
–  Will allow to avoid exp calls
–  Accuracy of interpolation results need to be carefully checked

17	

Optimization strategy

•  Test automatic optimizations by compiler
–  We don’t expect significant gains

•  Apply manual transformations
–  At algorithmic level

•  e.g. Testing different atmospheric interpolation schemes
•  Numerical results may be slightly different (need be

carefully validated)
–  Code refactoring
–  Exploiting the micro-architecture capabilities

•  Apply vectorization to the raybnd function to treat multiple
bunches at once

•  Apply the vectorization at the mathematical function level (using
dedicated libraries)

•  Want to obtain identical numerical results with respect to a
reference version

–  Reduce precision format whenever possible by means of automatic
tools

18	

First manual optimization

•  In raybnd function (by DP v_opt001)
•  Observation of redundant calls to ‘binary search’ function for

atmospheric and refraction tables interpolation
•  Simple code transformation to eliminate redundant calls

–  Speed-up of 1.09
–  No differences in final bunches coordinates
–  Bonus

•  Expose vectorization possibilities for exp calls

19	

Second manual optimization

•  Using a library vectorizing the most common mathematical
functions (exp, log, sin, cos, etc.) v_opt002
–  https://hal.archives-ouvertes.fr/hal-01511131/document
–  Announced speed-up of 280% for exp

•  Starting from version v_opt001
–  Replace in raybnd 3 exp calls to 1 vector exp call

•  Speed-up of 1.16
•  No differences in final bunches coordinates
•  Similar results obtained with vector exp developed by G. Revy

–  Version with simple precision

20	

Start implementing vectorization

•  Testing different libraries for an easier vectorization on different
architectures
–  bSIMD

•  https://developer.numscale.com/bsimd/documentation/
v1.17.6.0/

–  UME (Unified Multicore Environment)
•  https://gain-performance.com/ume/

•  Both require C++ compiler and don’t support vectorized
mathematical functions

•  First attempt vectorizing ‘binary search’ function using UME
–  Atmospheric tables are relatively small (e.g. 55 points)
–  Avoid binary search and simply group table elements by 4 or 8 to

perform comparisons with the searched value
–  No significant speed-up observed (using a different algorithm

though)

21	

Conclusions

•  Preliminary work started for corsika optimization in
collaboration with computer scientists (LIRMM/UPVD)

•  Focusing on photon propagation in the atmosphere
•  1.16 speed-up already obtained with simple code

transformation and limited application of vectorized
mathematical libraries (with the constraint of getting identical
results wrt reference version)

•  Next steps
–  Extend the vectorization in raybnd to other calculations
–  Start the work on precision reduction

•  Workshop at KIT next week about the corsika re-writing project
•  The goal is to integrate the optimizations in the new software

framework

22	

23	

BACKUP	

CTA

24	

corsika packages

25	

Interpolation in raybnd

•  In raybnd (for non vertical paths)
–  3 fast interpolations (calls to thickx_, refidx_, rhofx_)

•  Interpolation of atmospheric tables
•  Evaluate thickness, refraction index and density at the emission

altitude
•  Also other calls directly from cerenk

–  3 standard interpolations with binary search (calls to rpol)
•  Interpolation of refraction tables
•  Evaluate horizontal displacement and time offset for a given

density or altitude
•  Fast Interpolation not implemented for refraction tables

•  Comparing the 2 schemes (standard and fast)
–  Fast interpolation gives a speed-up of 1.15
–  Small differences found looking at the corsika output (see next slide)
–  Started the extension of fast interpolation to other tables but no

significant gain obtained for the moment

26	

Interpolation schemes

•  Small differences found in bunch coordinates (standard vs fast
interpolation)

–  x, y at micron level
–  arrival time at < 0.1 ps level
–  no angular differences

•  Problem of the validation of new code versions
–  Benchmark definition
–  Acceptable deviations from reference version

27	

dx	
 dy	
 dt	

