

cherenkov telescope array

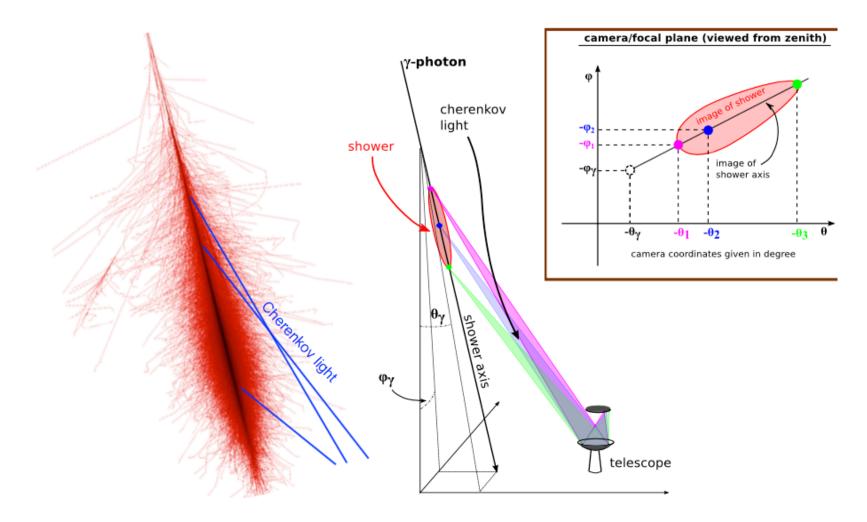
Preliminary work on corsika optimization

<u>L. Arrabito¹</u>, J. Bregeon¹, P. Langlois², D. Parello², G. Revy² ¹LUPM CNRS-IN2P3 France ²DALI UPVD-LIRMM France

F2F REPRISES, 21st Juin 2018, CC-IN2P3 Villeurbanne

Plan

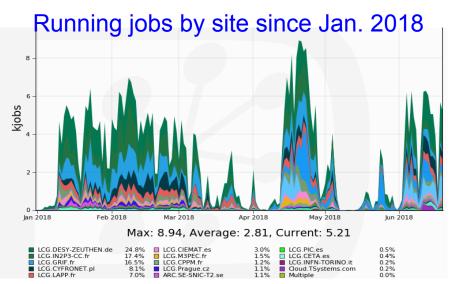
- Brief introduction to corsika
- Corsika profiling
- Compiler optimization tests
- First manual optimizations
- Next steps and conclusions


Introduction to corsika

- Detailed simulation of showers initiated by high energy cosmic rays
- Initially developed for the Kaskade experiment (since 1990 at KIT)
- Today is widely used by several 'cosmic rays' communities
- 900 users from 57 countries
- > 1900 citations
- <u>https://www.ikp.kit.edu/corsika/</u>

corsika for CTA

The software



- Main program (Fortran)
 - A single source of about 70k lines of code
- Customized external packages for electromagnetic and hadron interactions (Fortran)
 - EGS4, FLUKA, UrQMD, GHEISHA, QGSJET, EPOS-LHC, DPMJET, SIBYLL
- IACT/atmo package (written in C)
 - Extension to corsika to implement arrays of Cherenkov telescopes
 - Use of external atmospheric models
 - Propagation of light in the atmosphere with refraction
- Total of > 10⁵ lines of code
- Many person-years of development
- Project of full re-writing in modular C++ just started
 - Open source project

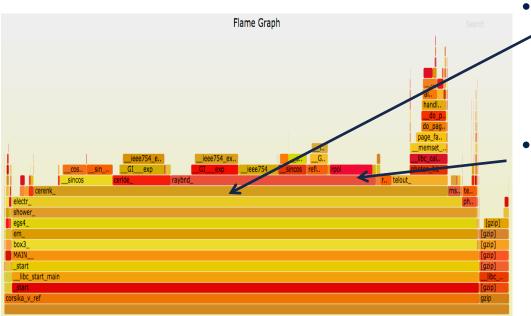
Motivations to improve corsika performances

- MC simulations in CTA are the most CPU consuming task
 - 70% of CPU spent in corsika (shower development)
 - 30% of CPU spent in telescope simulation
- Massive MC simulations run on the grid since 7 years to assess CTA design
- During CTA operations MC simulations will be periodically run to calculate the Instrument Response Functions

8000 jobs

- 6000-8000 concurrent jobs
- > 125 M HS06 CPU hours since Jan. 2018

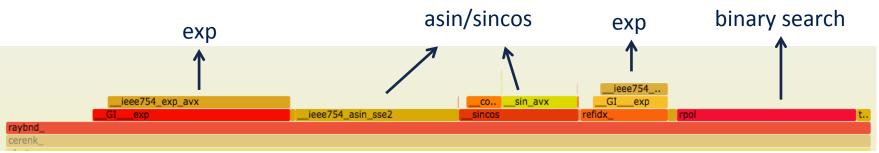
Corsika profiling with Linux perf



- Profiler tool for Linux based systems
- Used the sampling method (perf record/report), based on the 'cycles' event and using the call graph option
- Running on a dedicated server
 - x86_64
 - Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
 - CentOS Linux release 7.4.1708 (Core)
 - Compiled with: -O2 –funroll-loops
- Use 'standard' corsika input parameters (the same as in production)

Profiling results

Linux perf + FlameGraph



- 90% of CPU in CERENKsubroutine and below
 - Cherenkov photon production
 - Part of corsika 'core'
- 50% of CPU in *raybnd* function and below
 - Propagation of cherenkov photon in the atmosphere with refraction correction
 - Part of IACT/atmo package
- Compatible results obtained with different profiling tools
 - <u>https://poormansprofiler.org/</u> (based on gdb)
 - valgrind

Profiling results

• Zoom on raybnd (50% CPU)

- Most of the CPU spent in mathematical functions and atmospheric/refraction profile interpolation
 - 35% exp (used for atmospheric profile interpolation)
 - 35% sincos/asin
 - 20% binary search for refraction tables interpolation
- Very frequently called, once per photon bunch
 - About 160k photon bunches per shower (in our tests)
- Photon bunches are treated independently
 - Possible vectorization?
- Choose to start optimizing the raybnd function

Optimization strategy

- Test automatic optimizations by compiler
 - We did not expect significant gains
- Apply manual transformations
 - At algorithmic level
 - *e.g.* Testing different atmospheric interpolation schemes
 - Code refactoring
 - Exploiting the micro-architecture capabilities
 - Apply vectorization to the raybnd function to treat multiple bunches at once
 - Apply the vectorization at the mathematical function level (using dedicated libraries)
 - Want to obtain identical numerical results with respect to a reference version
 - Reduce precision format whenever possible by means of automatic tools

Compiler optimization tests

- Preparatory work
 - Reorganise corsika/sim_telarray packaging (D. Parello)
 - Allowing to easily test different compilation options and code transformations
- Combine different compilation options
 - Standard options:
 - -01, -02, -03
 - Loop optimizations options:
 - -ftree-loop-if-convert -ftree-loop-distribution -ftree-loop-distributepatterns -ftree-loop-im -ftree-vectorize -funroll-loops -funroll-allloops -floop-nest-optimize
 - Arithmetics expression optimization (it may affect numerical results):
 - -ffast-math
 - Other options
 - -mavx, -mavx2, -flto

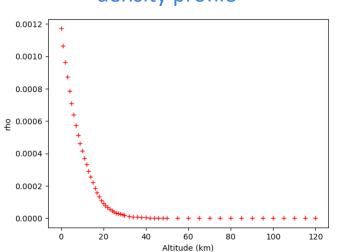
Compiler optimization tests

- Running conditions
 - Same as for profiling
 - Using keep-seeds option for random number generation to obtain reproductible runs
 - Run duration: about 8 minutes
 - Running on a dedicated server
- Performances compared with a reference version compiled with 'standard' options
 - -O2 --funroll-loops
- Simple performance measurements with 'perf stat': number of cycles, number of instructions, elapsed time, etc.
- Checking result reproducibility
 - Using a dedicated program to print the coordinates of first 10 photons of each bunch

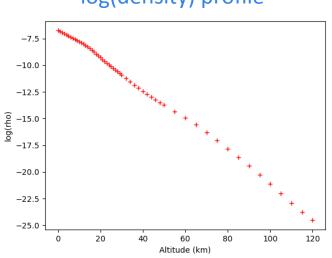
First results of compiler optimizations tests

- 3072 option combinations tested
 - No speed-up obtained beyond a factor 1.06
- Using ffast-math impacts numerical results (as expected)
 - Found that small differences in numerical results may induce different calls to random number generators leading to very different final results

Optimization strategy



- Test automatic optimizations by compiler
 We don't expect significant gains
- Apply manual transformations
 - At algorithmic level
 - *e.g.* Testing different atmospheric interpolation schemes
 - Code refactoring
 - Exploiting the micro-architecture capabilities
 - Apply vectorization to the raybnd function to treat multiple bunches at once
 - Apply the vectorization at the mathematical function level (using dedicated libraries)
 - Want to obtain identical numerical results with respect to a reference version
 - Reduce precision format whenever possible by means of automatic tools


Atmospheric profiles and interpolation

- Generation and propagation of Cherenkov photons require a precise description of the atmosphere in terms of density, thickness, refraction index
- The atmosphere is built from about 55 layers, and then interpolations are used to get precise values at various altitudes
- 35% of CPU time in raybnd spent in computing linear interpolation to evaluate log(density), log(thickness), log(refidx) at various altitudes
 - Implies calls to exp to obtain density, thickness, refraction index values

density profile

log(density) profile

Current interpolation schemes

- Standard interpolation
 - It makes use of binary search algorithm to find the the 2 closest points in the look-up table
- Fast interpolation
 - Enabled by default
 - Use pre-calculated fine-grained tables with equidistant steps in altitude
 - No need anymore of binary search to find the 2 closest points
 - Implemented for atmospheric tables but not for refraction tables

Interpolation schemes

- Comparing the 2 schemes (standard and fast)
 - Fast interpolation gives a speed-up of 1.15
 - Small differences found looking at the corsika output (photon coordinates)
 - x, y at micron level
 - Arrival time at < 0.1 ps level
 - No angular differences
- Started the extension of fast interpolation to refraction tables
 - No significant gain for the moment (though very preliminary)
- We've confirmed that interpolation algorithm has an impact on performances
- Other algorithms may be implemented in future (quadratic, cubic-splines)
 - Will allow to avoid exp calls
 - Accuracy of interpolation results need to be carefully checked

Optimization strategy

- Test automatic optimizations by compiler
 - We don't expect significant gains
- Apply manual transformations
 - At algorithmic level
 - e.g. Testing different atmospheric interpolation schemes
 - Numerical results may be slightly different (need be carefully validated)
 - Code refactoring
 - Exploiting the micro-architecture capabilities
 - Apply vectorization to the raybnd function to treat multiple bunches at once
 - Apply the vectorization at the mathematical function level (using dedicated libraries)
 - Want to obtain identical numerical results with respect to a reference version
 - Reduce precision format whenever possible by means of automatic tools

First manual optimization

- In raybnd function (by DP v_opt001)
- Observation of redundant calls to 'binary search' function for atmospheric and refraction tables interpolation
- Simple code transformation to eliminate redundant calls
 - Speed-up of 1.09
 - No differences in final bunches coordinates
 - Bonus
 - Expose vectorization possibilities for exp calls

Second manual optimization

- Using a library vectorizing the most common mathematical functions (exp, log, sin, cos, etc.) v_opt002
 - https://hal.archives-ouvertes.fr/hal-01511131/document
 - Announced speed-up of 280% for exp
- Starting from version v_opt001
 - Replace in raybnd 3 exp calls to 1 vector exp call

```
*rhofx = exp(p_log_rho[ipl-1]*(1.-rpl) + p_log_rho[ipl]*rpl);
*thickx = exp(p_log_thick[ipl-1]*(1.-rpl) + p_log_thick[ipl]*rpl);
*refidx = 1.+exp(p_log_n1[ipl-1]*(1.-rpl) + p_log_n1[ipl]*rpl);
```

- Speed-up of 1.16
- No differences in final bunches coordinates
- Similar results obtained with vector exp developed by G. Revy
 - Version with simple precision

Start implementing vectorization

- Testing different libraries for an easier vectorization on different architectures
 - bSIMD
 - <u>https://developer.numscale.com/bsimd/documentation/</u>
 <u>v1.17.6.0/</u>
 - UME (Unified Multicore Environment)
 - <u>https://gain-performance.com/ume/</u>
- Both require C++ compiler and don't support vectorized mathematical functions
- First attempt vectorizing 'binary search' function using UME
 - Atmospheric tables are relatively small (e.g. 55 points)
 - Avoid binary search and simply group table elements by 4 or 8 to perform comparisons with the searched value
 - No significant speed-up observed (using a different algorithm though)

- Preliminary work started for corsika optimization in collaboration with computer scientists (LIRMM/UPVD)
- Focusing on photon propagation in the atmosphere
- 1.16 speed-up already obtained with simple code transformation and limited application of vectorized mathematical libraries (with the constraint of getting identical results wrt reference version)
- Next steps
 - Extend the vectorization in raybnd to other calculations
 - Start the work on precision reduction
- Workshop at KIT next week about the corsika re-writing project
- The goal is to integrate the optimizations in the new software framework

BACKUP

CTA Southern Site Paranal, Chile 4 large size telescopes 25 mid-size telescopes 70 small size telescopes

CTA Northern Site La Palma Island 4 large-size telescopes

fully 4-dim.

tracking, decays, atmospheres, ...

- el.mag. EGS4 *
- Iow-E.had.* FLUKA * UrQMD GHEISHA
- high-E.had. ** QGSJET ** EPOS-LHC * DPMJET * SIBYLL

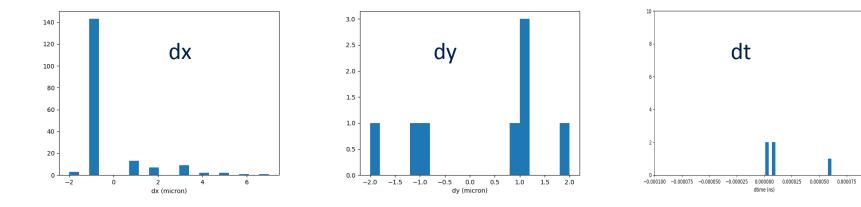
+ many extensions & simplifications

* recommended
* based on Gribov-Regge theory
* source of systematic uncertainty

Tuned at collider energies, extrapolated to $> 10^{20} \text{ eV}$

> Sizes and runtimes vary by factors 2 - 40. Total: >> 10⁵ lines of code many person-years

Interpolation in raybnd



- In raybnd (for non vertical paths)
 - 3 fast interpolations (calls to thickx_, refidx_, rhofx_)
 - Interpolation of atmospheric tables
 - Evaluate thickness, refraction index and density at the emission altitude
 - Also other calls directly from cerenk
 - 3 standard interpolations with binary search (calls to rpol)
 - Interpolation of refraction tables
 - Evaluate horizontal displacement and time offset for a given density or altitude
 - Fast Interpolation not implemented for refraction tables
- Comparing the 2 schemes (standard and fast)
 - Fast interpolation gives a speed-up of 1.15
 - Small differences found looking at the corsika output (see next slide)
 - Started the extension of fast interpolation to other tables but no significant gain obtained for the moment

Interpolation schemes

- Small differences found in bunch coordinates (standard vs fast interpolation)
 - x, y at micron level
 - arrival time at < 0.1 ps level
 - no angular differences

- Problem of the validation of new code versions
 - Benchmark definition
 - Acceptable deviations from reference version

0.000100