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Plan 

•  Brief introduction to corsika  
•  Corsika profiling 
•  Compiler optimization tests 
•  First manual optimizations 
•  Next steps and conclusions 
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Introduction to corsika 

•  Detailed simulation of showers initiated by high energy cosmic 
rays 

•  Initially developed for the Kaskade experiment (since 1990 at 
KIT) 

•  Today is widely used by several ‘cosmic rays’ communities  
•  900 users from 57 countries 
•  > 1900 citations 
•  https://www.ikp.kit.edu/corsika/ 
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corsika for CTA 
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The software 

•  Main program (Fortran) 
–  A single source of about 70k lines of code 

•  Customized external packages for electromagnetic and hadron 
interactions (Fortran) 
–  EGS4, FLUKA, UrQMD, GHEISHA, QGSJET, EPOS-LHC, 

DPMJET, SIBYLL 
•  IACT/atmo package (written in C) 

–  Extension to corsika to implement arrays of Cherenkov telescopes 
–  Use of external atmospheric models  
–  Propagation of light in the atmosphere with refraction 

•  Total of > 105 lines of code 
•  Many person-years of development 
•  Project of full re-writing in modular C++ just started 

–  Open source project 
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Motivations to improve corsika 
performances 

•  MC simulations in CTA are the most CPU consuming task 
–  70% of CPU spent in corsika (shower development) 
–  30% of CPU spent in telescope simulation 

•  Massive MC simulations run on the grid since 7 years to 
assess CTA design 

•  During CTA operations MC simulations will be periodically run 
to calculate the Instrument Response Functions 
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Corsika profiling with Linux perf 

•  Profiler tool for Linux based systems  
•  Used the sampling method (perf record/report), based on the 

‘cycles’ event and using the call graph option 
•  Running on a dedicated server 

–  x86_64 
–  Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz 
–  CentOS Linux release 7.4.1708 (Core)  
–  Compiled with: -O2 –funroll-loops 

•  Use ‘standard’ corsika input parameters (the same as in 
production) 
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Profiling results 

•  90% of CPU in CERENK 
subroutine and below 
–  Cherenkov photon production  
–  Part of corsika ‘core’  

•  50% of CPU in raybnd function 
and below  
–  Propagation of cherenkov 

photon in the atmosphere with 
refraction correction 

–  Part of IACT/atmo package 
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•  Compatible results obtained with different profiling tools 
–  https://poormansprofiler.org/  (based on gdb) 
–  valgrind 



Profiling results 

 
•  Most of the CPU spent in mathematical functions and 

atmospheric/refraction profile interpolation 
–  35% exp (used for atmospheric profile interpolation)  
–  35% sincos/asin 
–  20% binary search for refraction tables interpolation 

•  Very frequently called, once per photon bunch 
–  About 160k photon bunches per shower (in our tests) 

•  Photon bunches are treated independently 
–  Possible vectorization? 

•  Choose to start optimizing the raybnd function 9	
  

exp	
   binary	
  search	
  
•  Zoom on raybnd (50% CPU) 
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Optimization strategy 

•  Test automatic optimizations by compiler  
–  We did not expect significant gains 

•  Apply manual transformations  
–  At algorithmic level  

•  e.g. Testing different atmospheric interpolation schemes 
–  Code refactoring 
–  Exploiting the micro-architecture capabilities  

•  Apply vectorization to the raybnd function to treat multiple 
bunches at once 

•  Apply the vectorization at the mathematical function level (using 
dedicated libraries) 

•  Want to obtain identical numerical results with respect to a 
reference version 

–  Reduce precision format whenever possible by means of automatic 
tools 
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Compiler optimization tests 

•  Preparatory work 
–  Reorganise corsika/sim_telarray packaging (D. Parello) 
–  Allowing to easily test different compilation options and code 

transformations 
•  Combine different compilation options 

–  Standard options:  
•  -O1, -O2, -O3 

–  Loop optimizations options: 
•  -ftree-loop-if-convert -ftree-loop-distribution -ftree-loop-distribute-

patterns -ftree-loop-im -ftree-vectorize -funroll-loops -funroll-all-
loops -floop-nest-optimize 

–  Arithmetics expression optimization (it may affect numerical results): 
•  -ffast-math 

–  Other options  
•  -mavx, -mavx2, -flto 

11	
  



Compiler optimization tests 

•  Running conditions 
–  Same as for profiling  
–  Using keep-seeds option for random number generation to obtain 

reproductible runs 
–  Run duration: about 8 minutes 
–  Running on a dedicated server 

•  Performances compared with a reference version compiled 
with ‘standard’ options 
–  -O2 –funroll-loops 

•  Simple performance measurements with ‘perf stat’: number of 
cycles, number of instructions, elapsed time, etc. 

•  Checking result reproducibility 
–  Using a dedicated program to print the coordinates of first 10 

photons of each bunch 
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First results of compiler optimizations 
tests 

•  3072 option combinations tested  
–  No speed-up obtained beyond a factor 1.06  

•  Using ffast-math impacts numerical results (as expected) 
–  Found that small differences in numerical results may induce 

different calls to random number generators leading to very 
different final results 
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Optimization strategy 

•  Test automatic optimizations by compiler  
–  We don’t expect significant gains 

•  Apply manual transformations  
–  At algorithmic level  

•  e.g. Testing different atmospheric interpolation schemes 
–  Code refactoring 
–  Exploiting the micro-architecture capabilities  

•  Apply vectorization to the raybnd function to treat multiple 
bunches at once 

•  Apply the vectorization at the mathematical function level (using 
dedicated libraries) 

•  Want to obtain identical numerical results with respect to a 
reference version 

–  Reduce precision format whenever possible by means of automatic 
tools 
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Atmospheric profiles and interpolation 
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•  Generation and propagation of Cherenkov photons require a precise 
description of the atmosphere in terms of density, thickness, 
refraction index  

•  The atmosphere is built from about 55 layers, and then interpolations 
are used to get precise values at various altitudes  

•  35% of CPU time in raybnd spent in computing linear interpolation to 
evaluate log(density), log(thickness), log(refidx) at various altitudes 
–  Implies calls to exp to obtain density, thickness, refraction index values  

density	
  profile	
   log(density)	
  profile	
  



Current interpolation schemes 

•  Standard interpolation 
–  It makes use of binary search algorithm to find the the 2 closest 

points in the look-up table 
•  Fast interpolation 

–  Enabled by default 
–  Use pre-calculated fine-grained tables with equidistant steps in 

altitude 
•  No need anymore of binary search to find the 2 closest points 

–  Implemented for atmospheric tables but not for refraction tables 
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Interpolation schemes 

•  Comparing the 2 schemes (standard and fast) 
–  Fast interpolation gives a speed-up of 1.15  
–  Small differences found looking at the corsika output (photon 

coordinates) 
•  x, y at micron level  
•  Arrival time at < 0.1 ps level 
•  No angular differences 

•  Started the extension of fast interpolation to refraction tables 
–  No significant gain for the moment (though very preliminary) 

•  We’ve confirmed that interpolation algorithm has an impact on 
performances 

•  Other algorithms may be implemented in future (quadratic, cubic-
splines) 
–  Will allow to avoid exp calls 
–  Accuracy of interpolation results need to be carefully checked 
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Optimization strategy 

•  Test automatic optimizations by compiler  
–  We don’t expect significant gains 

•  Apply manual transformations  
–  At algorithmic level  

•  e.g. Testing different atmospheric interpolation schemes 
•  Numerical results may be slightly different (need be 

carefully validated) 
–  Code refactoring 
–  Exploiting the micro-architecture capabilities  

•  Apply vectorization to the raybnd function to treat multiple 
bunches at once 

•  Apply the vectorization at the mathematical function level (using 
dedicated libraries) 

•  Want to obtain identical numerical results with respect to a 
reference version 

–  Reduce precision format whenever possible by means of automatic 
tools 
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First manual optimization 

•  In raybnd function (by DP v_opt001) 
•  Observation of redundant calls to ‘binary search’ function for 

atmospheric and refraction tables interpolation  
•  Simple code transformation to eliminate redundant calls 

–  Speed-up of 1.09 
–  No differences in final bunches coordinates  
–  Bonus 

•  Expose vectorization possibilities for exp calls 
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Second manual optimization 

•  Using a library vectorizing the most common mathematical 
functions (exp, log, sin, cos, etc.) v_opt002 
–  https://hal.archives-ouvertes.fr/hal-01511131/document 
–  Announced speed-up of 280% for exp 

•  Starting from version v_opt001  
–  Replace in raybnd 3 exp calls to 1 vector exp call  

•  Speed-up of 1.16 
•  No differences in final bunches coordinates  
•  Similar results obtained with vector exp developed by G. Revy  

–  Version with simple precision  
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Start implementing vectorization 

•  Testing different libraries for an easier vectorization on different 
architectures 
–  bSIMD 

•  https://developer.numscale.com/bsimd/documentation/
v1.17.6.0/ 

–  UME (Unified Multicore Environment)  
•  https://gain-performance.com/ume/ 

•  Both require C++ compiler and don’t support vectorized 
mathematical functions 

•  First attempt vectorizing ‘binary search’ function using UME 
–  Atmospheric tables are relatively small (e.g. 55 points)  
–  Avoid binary search and simply group table elements by 4 or 8 to 

perform comparisons with the searched value 
–  No significant speed-up observed (using a different algorithm 

though) 
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Conclusions 

•  Preliminary work started for corsika optimization in 
collaboration with computer scientists (LIRMM/UPVD) 

•  Focusing on photon propagation in the atmosphere  
•  1.16 speed-up already obtained with simple code 

transformation and limited application of vectorized 
mathematical libraries (with the constraint of getting identical 
results wrt reference version) 

•  Next steps 
–  Extend the vectorization in raybnd to other calculations 
–  Start the work on precision reduction 

•  Workshop at KIT next week about the corsika re-writing project 
•  The goal is to integrate the optimizations in the new software 

framework  
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corsika packages 
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Interpolation in raybnd 

•  In raybnd (for non vertical paths) 
–  3 fast interpolations (calls to thickx_, refidx_, rhofx_ ) 

•  Interpolation of atmospheric tables 
•  Evaluate thickness, refraction index and density at the emission 

altitude 
•  Also other calls directly from cerenk 

–  3 standard interpolations with binary search (calls to rpol)  
•  Interpolation of refraction tables  
•  Evaluate horizontal displacement and time offset for a given 

density or altitude  
•  Fast Interpolation not implemented for refraction tables 

•  Comparing the 2 schemes (standard and fast) 
–  Fast interpolation gives a speed-up of 1.15  
–  Small differences found looking at the corsika output (see next slide) 
–  Started the extension of fast interpolation to other tables but no 

significant gain obtained for the moment 

26	
  



Interpolation schemes 

•  Small differences found in bunch coordinates (standard vs fast 
interpolation) 

–  x, y at micron level  
–  arrival time at < 0.1 ps level 
–  no angular differences 

•  Problem of the validation of new code versions 
–  Benchmark definition 
–  Acceptable deviations from reference version 
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