

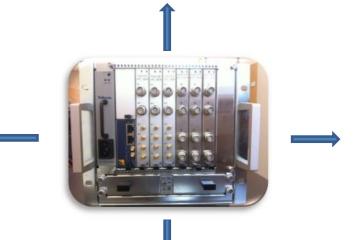
FASTER DAQ Network May 16th 2018 Clermont-Ferrant

Carniol Benjamin, Chaventré Thiérry, Cussol Daniel, Etasse David, Fontbonne Cathy, Fontbonne Jean-Marc, Harang Julien, Hommet Jean, Langlois Jérome, Poincheval Jérome

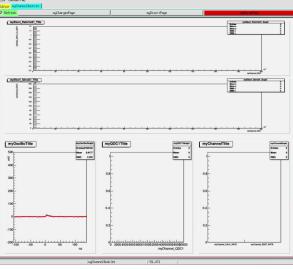
FASTER-V2

- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD

- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION


Offline Analysis

Ubuntu repository


FASTER-V2 OVERVIEW

Real Time Algorithms

Modular Electronic

Based on Root

FASTER-V2 OVERVIEW

STANDALONE SYSTEM

• 1 VITA 57 slot,

• 1 Gb/s Ethernet

• 1 FPGA (C5 140 LE)

MULTI-CHANNEL SYSTEM

- 2 VITA 57 slots,
- AMC.2 full size module,
- 3 FPGA(s) (C5 140 LE)
- 1 and 10 Gb/s Ethernet
- 10 MHz Clock synchronization

FPGA firmware loading by Ethernet

FASTER-V2 **OVERVIEW**

STANDALONE SYSTEM

MULTI-CHANNEL SYSTEM

- ±1V, ±2V, ±5V, ±10V input range ±1V input range
- 25 MHz Bandwidth

- 2 FADC (500MHz@12bits)

- 100 MHz Bandwidth

- DDC316 from TI
- 32 channels
- ±1V input adjustable Offset I-TO-V conversion front end
 - 3pC to 12 pC (full scale)
 - Integration time range from 10us to 10 ms

• ISEG BPS-Serie - 4W

• ± 500 V to ± 6 KV

• FMC project (CERN)

- 5 I/O ports
- 200 MHz Bandwidth
- LVTTL

FASTER-V2

- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD

- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION

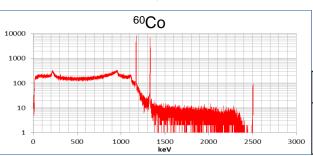
1000 100 2 10 1 0.001 0.01 0.1 1 10

FASTER-V2 REAL TIME ALGORITHMS

FASTER-CRRC4 FASTER-TRAPEZ-TDC

FASTER-QDC-TDC_{HR}
FASTER-RF
FASTER-SCALER
FASTER-SAMPLER

FASTER-ELECTROMETER



FASTER HV

Time resolution VS signal amplitude

Demon detector, CARAS board, FASTER-QDC-TDC_{HR}

	pic	FWHM
	keV	keV
	1173,21	1,71
	1332,48	1,90
)	2505,69	2,41

HPGe detector, MOSAHR board, FASTER_ADC

FASTER-V2

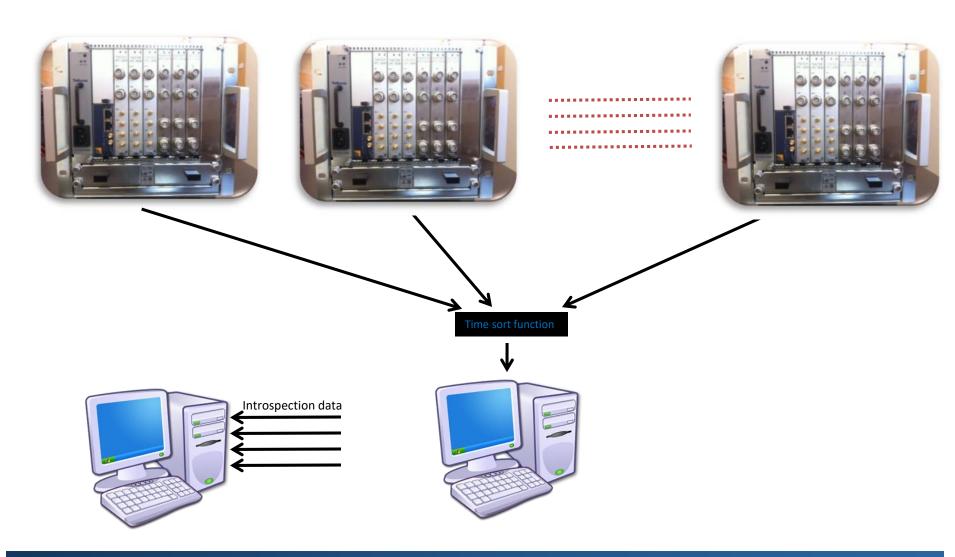
- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD

- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION

Offline Analysis

- Ubuntu 16.04 (production)-> 18.04 (Dev) LTS 64 bits
- ADA and Python
- Software trigger (multiplicity or Boolean trigger)
- 5.10^6 measurement/s per computer (~100 MB/s)
- Faster repository on LPC Server
 - sudo apt_get install fasterv2
- Update the software and the FIRMWARE at the same time
- Offline analysis package
- List of available packages
 - fasterv2, fasterac, rhb,
 - faster-rhb-xxx-demo (xxx=qdc, crrc4, trapez, rf,)

Ubuntu repository


FASTER-V2

- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD

- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION

MASTER BOARD

MASTER BOARD

MASTER

- Cyclone 5
- 128 MB DDR3
- 1 Gbe
- 12 unsorted data streaming -> 1 sorted data streaming

FASTER-V2

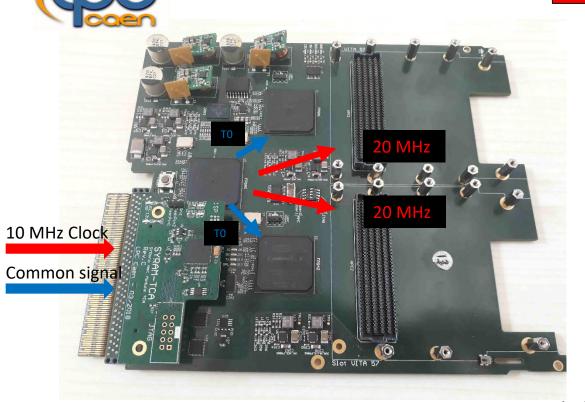
- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD

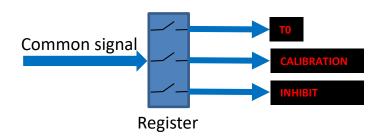
- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION

MMC (FASTER-V2)

MMC IN2P3

- Damien TOURRES (LPSC)
- ATMEGA128




FASTER-V2

- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD

- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION

CLOCK

10 MHz Clock Common signal

White Rabbit

FASTER-V2

- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD

- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION

PROTOCOL

FASTER-V2

Slow Control -> ETHERNET -> UDP/IP -> FASTER PROTOCOL

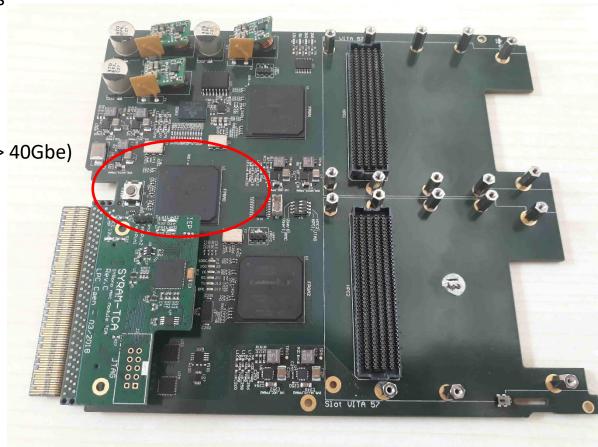
DATA -> ETHERNET -> UDP/IP -> FASTER PROTOCOL

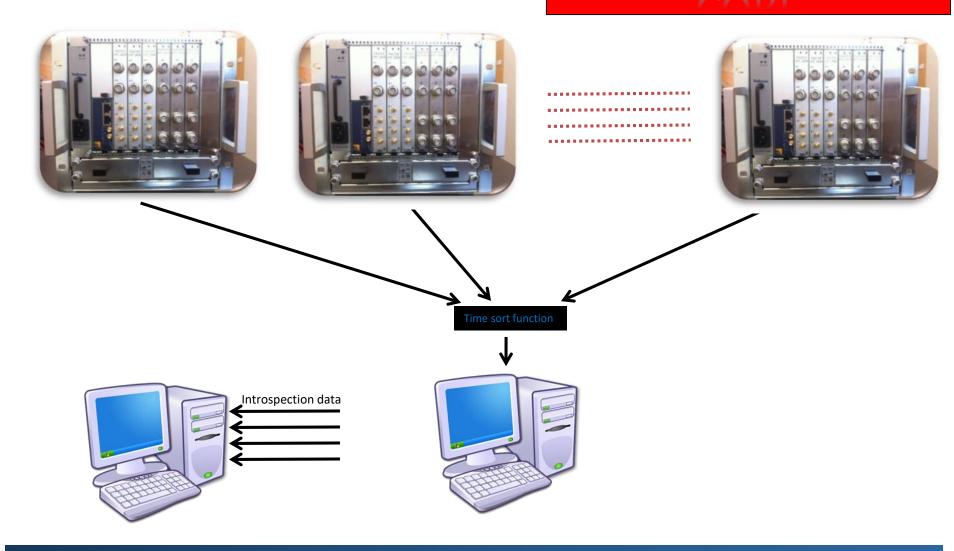
FASTER-V3

Slow Control -> ETHERNET -> UDP/IP -> IPBUS PROTOCOL DATA -> ETHERNET -> ?????

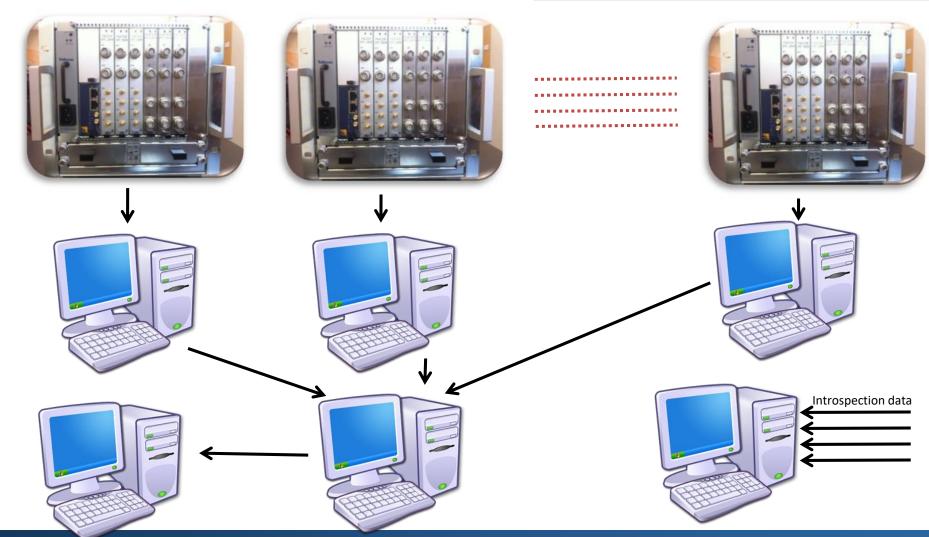
FASTER-V2

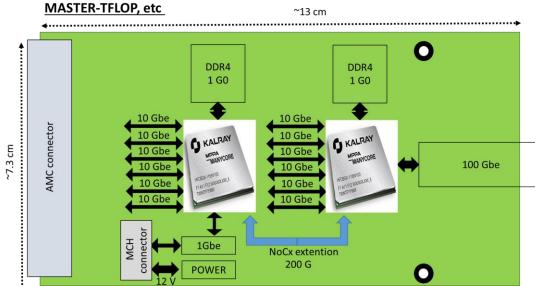
- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD


- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION


KALRAY MPPA COOLIDGE

- 600/900/1200 MHz frequency modes
- 5 or 10 Compute Cluster
- 4 MB -> 1 Cluster (20/40 MB)
- 16 CPU cores 64 bits -> 1 Cluster
- 80 or 160 CPU cores
- 3 or 6 TFLOPS
- 2 * 100 Gbe (x->10Gbe, y->1Gbe, w-> 40Gbe)
- 2 * 8 lane PCle Gen4
- 5 15 W / 5-30 W





FASTER-V2

- 1. FASTER OVERVIEW
- 2. FASTER REAL TIME ALGORITHMS
- 3. FASTER SOFTWARE
- 4. MASTER BOARD

- 1. MMC (FASTER_V2)
- 2. CLOCK
- 3. PROTOCOL
- 4. PROCESSOR MANY CORES
- 5. CONCLUSION

CONCLUSION

FASTER is a digital modular acquisition system from the electronic front end to the histogram builder software developped at LPC.

FASTER is very easy to install, to use with great performances.

FASTER is able to perform the main nuclear functions with a set of hardware very reduced.

FASTER is wireless ©.

FASTER is designed to handle medium size experiment (from one to few hundred channels).

FASTER is used in 10 Countries (More 60 FASTER systems has been manufacturing)

FASTER-v3 will be designed to handle large size experiment (from one to few thousand channels).

FASTER-v3 will be able to manage many TFLOPS in a small system.

FASTER-v3 will be compatible with a DAQGEN system