

Hard-Soft Correlations with the ALICE Upgrade

The ALICE detector already allows for a large variety of measurements testing the interaction between hard component and soft component in high-energy hadronic collisions (see dedicated contributions on current results)

- The foreseen ALICE upgrade program is mainly motivated by the precision study of heavy-flavor probes down to zero-p_T in Pb-Pb collisions at the top LHC energies
- Hard-soft correlation studies involving forward-rapidity measurements will largely profit from the ALICE upgrade:
 - More precise and complete description of the underlying event
 - Improved precision in the measurement of hard and electro-weak probes (charm/beauty separation at forward rapidity, HF baryons at mid-rapidity, extended coverage towards zero- p_{T} , more differential analyses...)

Outline

The ALICE Upgrade Program

- Selected items from the available MFT physics performance studies (benchmark: 0-5% most central Pb-Pb collisions)
 - Open Heavy Flavors
 - Quarkonia
 - Low-Mass Dimuons
 - Long-range correlations, azimuthal anisotropies, Drell-Yan...

ALICE Upgrade Strategy

Antonio Uras

ALICE Upgrade Strategy

- ➤ ALICE will run at 50 kHz in Pb-Pb (i.e. $L = 6 \times 10^{27}$ cm⁻¹ s⁻¹) with minimum bias (pipeline) readout (max readout with present ALICE set-up: ≈ 0.5 kHz)
 - Gain a factor of 100 in statistics over current program: $\times 10$ from the integrated luminosity (1 nb⁻¹ \rightarrow 10 nb⁻¹) and $\times 10$ from the pipelined readout allowing inspection of all collisions. Inspect $o(10^{10})$ central collisions instead of $o(10^{8})$
- \triangleright Improve vertexing and tracking at low p_T : better spatial resolution is needed on track reconstruction to improve secondary vertex reconstruction
- This entails a major upgrade of the whole apparatus:
 - New, smaller radius beam pipe
 - New inner tracking system: upgraded ITS + MFT
 - High-rate upgrade for the readout of the TPC, TRD, TOF, CALs, DAQ/HLT, Muons and Trigger detectors

The Muon Forward Tracker

MFT: vertex tracker for the Muon **Spectrometer**, to be installed between the interaction point and the hadron absorber

Nominal acceptance: $\begin{cases} 2.5 < \eta < 3.6 \\ \text{Full azimuth} \end{cases}$

- > 920 silicon pixel sensors (0.4 m²) in 280 ladders of 2 to 5 sensors each
- 10 half-disks, $0.7\% \text{ x/X}_0$ and 2 detection planes each
- 5% of the ITS surface, twice the ITS inner barrel

LHC Heavy-Ion Roadmap for Run3 Run4 (2021 \rightarrow)

- **Experiments request for Pb-Pb:** $L_{int} > 10 \text{ nb}^{-1}$ (ALICE LoI: 10 nb^{-1} with nominal solenoidal field + 3 nb^{-1} with reduced solenoidal field)
 - → ×100 larger min. bias sample for ALICE w.r.t. Run 2
 - → ×10 larger rare trigger sample for ATLAS/CMS w.r.t. Run 2
- * pp reference, p-A. Investigating feasibility for lighter nuclei collisions

Run2: $\mathcal{L}_{integrated}^{Pb-Pb} = 1.0 \ nb^{-1}$

Run3: $\mathcal{L}_{integrated}^{Pb-Pb} = 6.0 \ nb^{-1}$

Shutdown/Technical stop Proton physics Commissioning Ions

Run4: $\mathcal{L}_{integrated}^{Pb-Pb} = 7.0 \ nb^{-1}$

MFT Contributions to the ALICE Upgrade Physics

Open heavy flavors

- **theorem 2** Charm measurement down to $p_T = 1 \text{ GeV/c}$ in the single muon channel
- Seauty measurement down to $p_T = 0$ in the non-prompt J/ ψ channel

Prompt Charmonium production

- Prompt/non-prompt J/ ψ separation down to $p_T = 0$
- ϕ ψ(2S) measurement in central Pb-Pb collisions, down to $p_T = 0$

Low-mass dimuons

- Improved mass resolution for resonances
- Sensitivity to prompt continuum

> And also:

- Long-range correlation with the combined ITS+MFT coverage
- Event plane measurement and azimuthal correlations at forward rapidity
- \diamond Isolation of any prompt signal involving $p_T > 1$ GeV/c (Drell-Yan, limits on light BSM bosons?)

Charm Measurement with Single Muons

- Charm clearly distinguishable for $p_T > 1$ GeV/c
- ➤ At low p_T background mimics beauty template: large uncertainties in beauty extraction

- > Charm yield accessible starting from $p_T(\mu) = 1 \text{ GeV/c}$ (at least)
- Important baseline for charmonium measurements

Beauty Measurement with non-prompt J/ψ

ightharpoonup Prompt/displaced J/ ψ discriminating variable: longitudinal projection of the primary-secondary vertex distance considered for the analysis (not possible with the current ALICE Muon Spectrometer)

$$t_z = \frac{\left(z_{J/\psi} - z_{\text{vtx}}\right) \cdot M_{J/\psi}}{p_z}$$

Beauty Measurement with non-prompt J/ψ

- **Displaced/prompt separation** possible down to zero $p_T(J/ψ)$ within 5% stat + syst uncertainties
- **Beauty R_{AA} measurement** possible down to zero $p_T(J/\psi)$ within 7% stat + syst uncertainties even in central Pb-Pb

Prompt Charmonia: J/ψ and ψ'

- **S/B improved by a factor 6-7**, significance improved by a factor up to 1.5
- The ψ' is visible even in central Pb-Pb collisions: signal extraction more robust, systematic uncertainties significantly reduced

Prompt Charmonia: J/ψ and ψ'

- **Dissociation/recombination** models for charmonia can be tested by comparing the nuclear modification factors of J/ψ and $\psi(2S)$ down to zero p_T
- Precision measurement for J/ψ (elliptic) flow in all collision systems

EM Probes: Low Mass & Continuum Dileptons

- Low and intermediate mass dileptons both in the dielectron (mid rapidity) and dimuon (forward rapidity) channels
- Isolation of prompt sources needs precise measurement of dilepton offset
- In addition, MFT will improve the mass resolution for light resonances in dimuons

EM Probes: Low Mass & Continuum Dileptons

- **Precise measurement of dilepton offset** to remove charm and π/K continuum
- ❖ **Dielectron channel advantaged** thanks to the excellent offset resolution of the upgraded ITS, but dedicated low magnetic field needed for low p_T acceptance
- Charm rejection strategy for the MFT must e optimized for the intermediate masses

ITS+MFT Combined η-Acceptance

η-coverage vs vertex z:

- **♦** MFT tracks with hits in ≥ 4 disks
- ITS tracks with ≥ 4 layers (with ≥1 hits in IB)
- ❖ ITS coverage for tracks with 3 inner layers

(dashed lines – geometrical acceptances; shaded areas – acceptance from simulations)

- With ≥ 4 ITS layers and ≥ 4 MFT disks:
 - \rightarrow η-separation up to 5 units in |z| < 10 cm
 - With a minimum a η gap of 1 unit
- If only 3 inner ITS layers, η-separation can be up to 6 units

ITS+MFT: Long-Range 2-Particle Correlations

- Example phenomenon: overlapping strings push each other and generate transverse pressure
- ❖ Implementation in PYTHIA8: "string shoving" → near-side "ridge"

We'll be able to study long-range 2-Particle Correlations between unidentified tracks from MFT and identified tracks in central barrel

$$\Sigma(n_F, n_B) \equiv \frac{1}{\langle n_F \rangle + \langle n_B \rangle} [\langle n_F \rangle \omega_{n_B} + \langle n_B \rangle \omega_{n_F} - 2 \operatorname{cov}(n_F n_B)]$$

Significant differences between the predictions from different generators!

Reaction Plane Measurement

Excellent reaction plane resolution, thanks to the high-granularity and the possibility to perform a standalone tracking (excluding contaminations from noisy clusters)

Low-Mass Drell-Yan Measurement

Low-mass (< 10 GeV/c²) Drell-Yan lepton-pair production at forward rapidity: important source of information on the partonic structure of protons

- Constraints on the gluon distribution and its nuclear dependence through the transverse momentum distributions
- Information about the onset of (gluon) saturation at small-x

Drell-Yan: main source of prompt dimuons between J/ ψ and Υ at the LHC

- Easily identifiable with a mass-offset combined fit on MFT-matched dimuons
- \triangleright Due to the relatively large mass, a strong single-μ p_T cut (p_T > 2 GeV/c) can be imposed to improve the quality of the sample

Double-Parton Scattering

- All the relevant channels for the DPS studies will profit from the high luminosity available in the Run3-4 program
- The continuous, untriggered data taking strategy will largely enhance the possibility of performing measurements combining high-p_T muons and electrons

The MFT will specifically improve the signal/background for channels where the signal is composed of prompt muons: J/ψ + third high- p_T muon

Conclusions

Hard-Soft correlation studies in ALICE will largely profit from the ALICE-MFT upgrade: new observables, improvement of the already available ones

- Charm/beauty single-muon separation
- Prompt/diplaced charmonium separation
- **EM** probes from low- and intermediate-mass dimuons
- Large η-acceptance and low-p_T reach in ITS+MFT correlation studies
- Better understanding of the underlying event at forward rapidity

Antonio Uras

Run3+Run4: focus on multiplicity-dependent studies

Backup Slides

ALICE Muon Physics: Motivations

❖ The high-energy frontier: large and long-living QGP, large cross-sections for heavy-flavors. Vanishing net baryon density: Early Universe conditions

The low-energy frontier: focus on light-flavor observables.
Energy scan: search of the critical point and characterization of the phase transition

ALICE Muon Physics: Motivations

- Main stream of the ALICE Muon Physics: study the behavior of the hadronic matter at extreme temperature and energy density conditions
- Motivations still valid after the LHC LS2, but: wider range of observables, more precise observations
- Forward Physics in ALICE: unique tool to study QGP at the limits of the Bjorken plateau at LHC energies
- Complementary to the studies of ALICE central barrel, ATLAS and CMS at midrapidity. Powerful tool to constrain the theoretical models

ALICE Muon Physics: Current Items

- **Low-mass dimuons.** Non-perturbative aspects of QCD through Dalitz and 2-body decays of light narrow resonances close to freeze-out. (Hidden) strangeness production. Thermal emission mediated by the broad vector meson ρ in the form $\pi^+\pi^- \to \rho \to \mu^+\mu^-$
- Quarkonium states. Dissociation/recombination in the QGP phase (and in smaller systems?). Thermal charm production at low p_T. Test of perturbative QCD hadro-production mechanisms in pp collisions. Photo-production in ultra-peripheral heavy-ion "collisions"
- ➤ Heavy-flavor single muons. Energy loss and coupling of charm and beauty quarks with the deconfined medium
- ➤ Single muons and dimuons from W/Z bosons. Standard candle reference for inmedium effects. Probes of nucleons and nuclei parton structure

Main Design Limitations of the Current Muon Arm

- \triangleright High level of background from π/K decays
 - Large systematic uncertainties induced by background subtraction for all physics topics. Open HF analysis in single muons cannot go below $p_T = 4 \text{ GeV/c}$. $\psi(2S)$ cannot be easily observed
- Impossibility to determine muon production vertex
 - No charm/beauty separation in single muons
 - No beauty measurement from non-prompt J/ψ: we miss an important source of information for the study of beauty
- Limited mass resolution for light neutral resonances
- Readout not designed for the interaction rates expected after LS2

Muon Spectrometer Electronics upgrade

MFT

The MFT Concept

Extrapolating back to the vertex region degrades the information on the kinematics

The MFT Concept

Muon tracks are extrapolated and matched to the MFT clusters before the absorber

Muon Spectrometer

High pointing accuracy gained by the muon tracks after matching with the MFT clusters. Rapidity window reduces to 2.5 < y < 3.6

Muon Measurement with the ALICE Detector

Muon Spectrometer designed to detect muons in the polar angular range $2-9^{\circ}$, i.e. $-4.0 < \eta < -2.5$ and in the full azimuthal range

- Hadron Absorber
- Dipole Magnet
- 10 tracking chambers
- Iron wall
- 4 trigger chambers

Heavy Flavor and Prompt Charmomium

- Probing QCD medium by measuring the energy loss of quarks c and b
- Thermalization and hadronization of heavy quarks
- Measuring total charm and beauty production cross-section: gold reference for quarkonia studies

- Evaluation of the contribution of c-cbar recombination to the production of charmonium at LHC energies
- Direct observation of the deconfined phase of matter

The Two "Historical" Pillars

Dissociation of QQ states via color-screening

Matsui and Satz, 1986

Direct probe of medium deconfinement and temperature Mass dependence of parton energy loss (dead cone)

Dokshitzer and Kharzeev, 2001

In-medium gluon radiation is expected to increase with the colorcharge of the emitting particle, and to decrease with its mass.

Direct probe of QCD interaction dynamics over extended systems

 T/T_c

 $1/\langle r \rangle$

Charm Measurement with Single Muons

- ▶ Performance studies only available for p_T < 6 GeV/c because of the limited MC statistics for the background
- Analysis strategy: fit of the total transverse offset distribution with the three expected contributions: background, charm and beauty. Templates for each component are extracted from the MC simulations
- > Transverse offset: distance between the primary vertex (measured with the ITS) and the transverse position of the muon tracks extrapolated to the z of the primary vertex

$$\Delta = \sqrt{(x_{\rm V} - x_{\rm Extrap})^2 + (y_{\rm V} - y_{\rm Extrap})^2}$$

Prompt Charmonia: J/ψ and ψ'

- Precision measurement for J/ψ at forward rapidity already in LHC Run 2, but:
 - No insight on ψ' physics in central Pb-Pb
 - Only inclusive measurement available at forward rapidity

PCA: Point of Closest Approach between two muon tracks

PCA Quality: Estimates the probability that both muons are coming from the PCA

Powerful tool to improve the S/B when the tracks have $p_T > 1$ GeV/c

$$f_i(\vec{v}) = \exp\left[-0.5(\vec{v} - \vec{r_i})^T V_i^{-1}(\vec{v} - \vec{r_i})\right]$$

where $\vec{r_i}$ is the point of closest approach of track i to the point \vec{v} . V_i is the covariance matrix of the track i at $\vec{r_i}$

Probability that the two tracks come from the same vertex \vec{v}

$$P(\vec{v}) = \frac{2f_1(\vec{v})f_2(\vec{v})}{f_1(\vec{v}) + f_2(\vec{v})}$$

Prompt Charmonia: J/ψ and ψ'

Statistical uncertainties for prompt charmonia: L_{int} = 10 nb⁻¹

- Central Barrel: between 1% and 5% with the full TPC+TRD PID
- MUON: below 0.3% independently of the MFT

- Central Barrel: about 20% with the full TPC+TRD PID
- MUON: about 10% independently of the MFT

Low Mass & Continuum Dilepton Physics

- Modification of spectral functions of vector mesons in the medium, linked to the chiral symmetry restoration
- Dilepton (virtual photon) radiation from the partonic phase
- Strangeness production

ψ' Measurement: Physics Performance

Systematic uncertainty dominated by background description or subtraction: still, within 10%

Inclusive ψ' (3.40 < $M_{\mu\mu}$ < 3.90 GeV/ c^2) : R_{AA} = 0.3, with the MFT					
p_{T} [GeV/c]	Signal [×10 ³]	S/B	$S/\sqrt{S+B}$	Stat. Err. [%]	Sys. Err. [%]
0-1	4.47	0.014	7.8	10.7	9.9
1 - 2	8.67	0.014	11	8.5	10.1
2 - 3	6.76	0.018	11	8.7	9.0
3-4	4.11	0.027	10	9.0	8.0
4-5	2.57	0.030	8.7	10.9	7.8
0-10	30.3	0.017	22	4.3	9.2

Open HF with the MFT: What about Systematics?

- **❖** Introducing the MFT in the muon HF measurements:
 - Significant improvement of the physics reach
 - Introduction of new systematic uncertainty sources
- **❖** Main systematic sources introduced by the MFT in the HF analyses:
 - \triangleright Control of the MUON-MFT fake match fraction. Important since key-variables like single muon offset and dimuon t_z depend on the MFT pointing resolution, which is different for correct and fake MUON-MFT matches. It was verified that the effect is included in a 10% uncertainty of the MFT pointing resolution
 - Assumption of the p_T distribution for the HF hadrons. Important since it influences the shape of the single muon offset and dimuon t_z templates. It was verified that a non-negligible impact only exists for the single muon analysis: below 7% for the open charm measurement

Heavy Quarks in the QGP

graphics courtesy J. Uphoff

Heavy Quarks in the QGP

- ♣ Large mass ($m_c \approx 1.5$ GeV, $m_b \approx 5$ GeV) \Rightarrow produced in large virtuality Q² processes at the initial stage of the collision with **short formation time** $\Delta t > 1/2m \approx 0.1$ fm << $\tau(QGP) \approx 5-10$ fm/c. Insight on the short time scale of the collision
- **Charmed and beauty hadrons have a long life time** (cτ \approx 150-300 μm and cτ \approx 500 μm): information on the evolution of the deconfined medium
- Sensitivity to the density of the medium is provided by in-medium energy loss of heavy quarks ("Dead-cone" effect)

- Possible charm thermal production? \Rightarrow May increase the yield of charm hadrons at low p_T by up to 50-100%. Need to measure charm production down to $p_T = 0$
- Measuring total charm and beauty cross section: natural normalization for quarkonia production (main uncertainty for J/ψ regeneration models)

Low Mass Dimuons in ALICE

Low mass dilepton production in heavy-ion → key information on the hot and dense state of strongly interacting matter produced in high-energy nucleus-nucleus collisions

Insight on **non-perturbative QCD**:

- Strangeness production investigated via φ meson production
- In-medium modifications of hadron properties accessed through ρ spectral function: possible link to chiral symmetry restoration

Dileptons (dielectrons, dimuons) → Negligible final-state effects

Measurements in pp and p-A collisions → Soft particle production in Cold Nuclear Matter, needed reference for correctly interpreting heavy-ion observations

Conclusions

The ALICE experiment has already a rich and successful physics program based on the performance of the Muon Arm

- R_{AA} and elliptic flow for muons from open HF: interaction between heavy quarks and deconfined medium
- Charmonia: R_{AA} and elliptic flow give insight on the suppression/recombination mechanisms predicted by the models
- > Low Mass Dimuons: although limited by the low statistics, no competitor at the LHC
- Various items not considered here: for instance, J/ψ photoproduction, J/ψ polarization

The MFT could significantly boost the interest of the ALICE muon physics (the upgrade of the Muon Spectrometer electronics is mandatory!)

- Separation of charm/beauty down to very low p_T
- \triangleright Precise $\psi(2s)$ measurement even in central Pb-Pb
- Prompt and non-prompt J/ψ separation
- Improve S/B ratio and mass resolution for Low-mass dimuons

Beyond Standard Model Searches?

Light scalar or vector BSM bosons could be observed in high-energy (with large QGP volumes produced), high-luminosity nuclear collisions

- J. Ellis & P. Salati, Nuclear Physics B342 (1990) J. Davis & C. Böhm, arXiv:1306.3653
- Resonance in the thermal dilepton production from the QGP for masses up to 3 GeV/c²: dilepton measurements in ALICE could set limits on quark- and lepton-couplings of light BSM bosons
- * Heavier bosons would mainly decay into multiparticle states involving cc and ττ pairs, and are no longer detectable in the ee or μμ channels
- ❖ ALICE: feasibility studies on dark photons of mass < 100 MeV/c² http://www.ge.infn.it/~ldma2015/presentations/wednesday-morning/05_gunji.pdf</p>