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• Nucleon structure in QCD

Partonic wave function

Physical characteristics

• Transverse distribution of partons

GPDs and exclusive processes in ep/γp

Transverse geometry in pp

Hard-soft correlations

Multiparton interactions

• Fluctuations and correlations

Fluctuations and diffraction in ep

Parton correlations

Effects on pp



Nucleon structure: Hard processes in pp 2
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• Factorization of cross section

Separate k2
T ∼ µ2(soft)←→ M2

σ = f1(x1, µ
2) f2(x2, µ

2) × σhard(µ
2,M2)

One-body densities of partons PDFs

• Underlying event characteristics

Many observables: Hadron number distributions, pT , energy flow, . . .

Hard-soft correlations

• Proton as dynamical system

Partonic wave function (scale µ2)

Physical properties: Spatial distributions, fluctuations, parton correlations, . . .

Formulated as generalizations of PDFs. Measurable in ep/γp.



Nucleon structure: Parton picture 3
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• Vacuum fluctuations

Strong gluon fields of size µ−1vac ≪ 1 fm

Chiral symmetry breaking: q̄q condensate,
dynamical mass generation, π as collective mode

• Slow–moving nucleon P ∼ µvac

t→ iτ statistical mechanics
⟨N |O|N⟩ from correlation functions

No concept of “particle content”

• Fast–moving nucleon P ≫ µvac

Closed system: Wave function description
Feynman, Gribov. Alt: Light–front quantization

Components with different particle number

Many–body system: Constituents, interactions,
spatial structure, orbital motion, . . .

QCD: UV divergences, renormalization,
scale dependence↔ factorization



Nucleon structure: Many–body system 4
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• Components of system

x > 0.1 Valence quarks: Source,
quantum numbers
Also gluons

∼ 10−1..2 Sea quarks, gluons:
Quantum numbers
Generated by non–pert. interactions

x < 10−2 Gluons, singlet sea:
Radiatively generated

• Physical properties

Number densities incl. spin/flavor PDFs

Transverse spatial distributions GPDs

Orbital motion, ang. momentum TMDs

Quantum fluctuations: Dispersion

Multiparton correlations MPDs, GPDs

Densities with operator definition ⟨N |QCD–Op |N⟩
Calculable with non–perturbative methods
Scale dependence from RNG equation.



Transverse distributions: Exclusive processes 5
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• Hard exclusive meson production

Meson produced in small–size qq̄ configuration

QCD factorization theorem Q2 ≫ µ2
had ∼ |t|

Collins, Frankfurt, Strikman 96

GPDs: Partonic form factor of nucleon,
universal, process–independent
Ji 96, Radyushkin 96

Operator definition ⟨N ′| twist-2 |N⟩,
renormalization, non-pert. methods

• Transverse spatial distribution of partons x′ = x

f(x,ρ) =

∫

d2∆T

(2π)2
e−iρ∆T GPD(x, t) 2D Fourier

Tomographic image of nucleon at fixed x,
changes with x and Q2

• Large x: Quark GPDs, polarization, x′ ̸= x
JLab12: DVCS, meson production



Transverse distributions: Gluons 6
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• Transverse distribution of gluons

Exclusive J/ψ at HERA, also φ, ρ
Large x: FNAL, COMPASS, JLab12 φ

Transverse profile from relative t–dep.

Gluonic radius from slope ⟨ρ2⟩g = 2Bexcl

• Important observations

Gluonic radius ⟨ρ2⟩g much smaller
than soft nucleon radius ∼ 1 fm2

Grows with effective Regge slope
α′g ≈ 0.14GeV−2 < α′soft
Parametrization available: Frankfurt, Strikman, CW 10

• Q2 dep. from DGLAP evolution

Partons decay locally in transverse space

Size changes because initial partons at
x0 > x sit at smaller transv. distances.
Small effect at Q2 > few GeV2

FSW04



Transverse distributions: Applications to pp 7
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• Hard process from parton-parton collision

Local in transverse space p2
T ≫ (transv. size)−2

• Cross section as function of pp impact par

σ12(b) =

∫

d2ρ1 d2ρ2 δ(b− ρ1 + ρ2)

×G(x1, ρ1) G(x2, ρ2) σparton

Calculable from known transverse distributions
Integral

∫

d2b reproduces inclusive formula

Normalized distribn P12(b) = σ12(b)/[
∫

σ12]

• New information available

Model spectator interactions depending on b
Underlying event

Predict probability of multiple hard processes
Dynamical correlations? FSW04

Diffraction: Gap survival probability
Determined largely by transverse geometry FHSW 07



Transverse distributions: Hard vs soft interactions 8
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• Transverse size in soft interactions
from pp elastic amplitude + unitarity

σpp
soft inel(b) = 1− |1− Γel(s, b)|2

R2(soft) ≫ ⟨ρ2⟩g(x>10−4) two scales!

• Two classes of pp collisions FSW04/10

Peripheral: Most of inelastic cross section

Central: High probability for hard process

• Hard processes select central collisions

Underlying event in hard processes
very different from min. bias collisions

Geometric correlations:
Hard process↔ centrality↔ event chars

New tests of dynamical mechanisms
in particle production



Transverse distributions: Hard-soft correlations 9
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Figure 4: Comparison of UE activity at
√

s 0.9, 2.76, and 7 TeV for (left) particle density, and
CMS underlying event analysis, JHEP 1509 (2015) 137

• Underlying event activity as function of trigger pjet
T

• pjet
T ∼ few GeV: No hard process, collisions mostly peripheral, low activity

• pjet
T ! 10 GeV: Hard process, collisions central, high activity.

Little changes with further increase of pjet
T because collision already central

• Geometric correlations — impact parameter as “hidden variable” FSW04/10



Transverse distributions: MPI 10
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1

σeff

×
f(x1, x3)f(x2, x4)

f(x1)f(x2)f(x3)f(x4)

• Double collision rate parametrized by σ−1eff

• Mean field approximation

Calculable from transverse distributions

σ−1eff (mean field) =

∫

d2b P12(b)P34(b)

Reference prediction

⟨ρ2⟩g(x ∼ 0.1) gives σeff ∼ 34 mb

• Enhancement observed

CDF/D0 3jet + γ rate about 2× larger than mean field

LHC MPI results → this meeting

Dynamical explanation? Correlations beyond MF

• Transverse distributions of partons determine
mean field expectation for MPI



Quantum fluctuations: Parton densities 11
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• Nucleon quantum many-body system

Partonic wave function has components with
different particle number, transverse size, etc.

High-energy process intercepts instantaneous
configurations, interactions ”frozen”

Inclusive DIS measures average parton density

Fluctuations of parton density and transverse size?
Fundamental property of many-body system
Frankfurt, Strikman, Treleani, CW, PRL 101:202003, 2008

• Fluctuations of gluon density

Hard diffractive processes at small x

Amplitude diagonal in partonic states |n⟩,
proportional to configurations’s gluon density Gn

Fluctuations of Gn lead to dissociation
Cf. soft diffraction: Good, Walker 60, Miettinen, Pumplin 78

ωg ≡
⟨G2⟩ − ⟨G⟩2

⟨G⟩2
=

dσ/dt (γ∗N → V X)

dσ/dt (γ∗N → V N)

∣

∣

∣

∣

t=0



Quantum fluctuations: Sizes and MPI 12
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• Scaling model Close et al. 83: EMC effect

Fluctuations of size change effective scale
of non-pert gluon density µ2(gluon) ∝ R−2

Size distribution from soft cross section
fluctuations ωσ ∼ 0.25 at

√
s = 20GeV

Gluon density fluctuations change with x,Q2

through DGLAP evolution

Roughly consistent with HERA data

• Fluctuation effect on MPI

Small effect of gluon density fluctuations
ωg < 0.1 at Tevatron

Moderate enhancement from size fluctuations
σeff (fluct) ≈ (1− ωσ/2) σeff (mean field)
∼10-15% at Tevatron

Fluctuation effect on MPI small,
cannot explain experimental rates



Parton correlations: QCD vacuum structure 13
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• Parton correlations in nucleon

How is the probability to find a parton
influenced by having other parton nearby?
Fundamental property of many–body system: Condensed matter, nuclei

Multiparton distributions
Blok, Dokshitzer, Frankfurt, Strikman 10; Diehl, Ostermeier, Schafer 11

⟨N |Otw2(x1, r1T ) Otw2(x2, r2T ) |N⟩r1T−r2T = rT

Subtleties: UV divergences, renormalization, mixing

• Perturbative and non-perturbative correlations

DGLAP evolution: Active parton from perturbative
splitting, partner within range rT ∼ µ−1

Chiral symmetry breaking: Nonperturbative qq̄ pairs
with transverse size≪ 1 fm
Schweitzer, Strikman, CW 12. Cf. Shuryak 82; Diakonov, Petrov 84

• Effect on MPI

Perturbative correlations can explain observed
enhancement beyond mean field
Review Blok, Strikman 17



Parton correlations: Dynamical model 14
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• Model of nonperturbative correlations
Schweitzer, Strikman, CW 12

Chiral quark-soliton model: Dynamical quark mass,
semiclassical approximation in large–Nc limit
Diakonov, Petrov, Polylitsa 88

Sea quark transverse momenta up to pT ∼ µχSB
Different from valence quarks pT ∼ R−1

Correlated qq̄ pairs in nucleon wave function:
Spin/flavor structure, σ/π quantum numbers

• Signals in deep-inelastic lepton scattering?

PT distributions in semi-inclusive DIS
incl. spin asymmetries, particle correlations. JLab12, COMPASS

Particle correlations between current
and target fragmentation regions
W ∼ few GeV to avoid DGLAP radiation. COMPASS, EIC

Exclusive meson production at large x
Knockout of correlated qq̄ pair. JLab12



Summary 15

• Nucleon as dynamical system

Quantum many-body system, wave function description

Information from ep/γp and non-perturbative theoretical approaches

• Transverse geometry essential aspect of pp collisions

Transverse distribution of partons from ep/γp (GPDs)

Hard processes select central pp collisions

Geometric correlations explain UE characteristics

• Nucleon properties determining MPI rates

Transverse distributions reasonably well known, mean–field expectation
more data expected
COMPASS, JLab12, EIC

Density/size fluctuations rough estimates moderate enhancement ∼15%

Parton correlations theoretical models, substantial enhancement
future tests in ep? from pert correlations
JLab12, EIC
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• Potential interest in nucleon structure community

Connections to exclusive processees (GPDs), semi–inclusive DIS (TMDs), higher twist

Study of parton correlations “next step” after one-body densities



Supplementary material



Diffraction: Rapidity gap survival 18
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• Central exclusive diffraction

Heavy system produced in
hard two–gluon exchange

Concurrent soft spectator interactions
must not produce particles
Khoze, Martin, Ryskin 97+

• Survival probability S2

Mean–field S2 calculable from transverse
gluon distn and pp elastic amplitude
Model–independent, pure transverse geometry FHSW06

Basic suppression by factor ∼ 30− 40 from
elimination of scattering at small b √

s = 14 TeV

Additional suppression by factor > 2− 3 from
dynamical correlations, black–disk regime
Requires detailed modeling

• Diffraction pattern in pT1, pT2
Experimental tests: CMS/TOTEM or LHC420
STAR pp2pp @

√
s = 500GeV


