Transverse geometry and hard-soft correlations in high-energy pp collisions

C. Weiss (JLab), Hard-Soft Correlations, Clermont-Ferrand U., 24-July-18 Jefferson Lab

- Nucleon structure in QCD
 Partonic wave function
 Physical characteristics
- Transverse distribution of partons
 GPDs and exclusive processes in ep/γp
 Transverse geometry in pp
 Hard-soft correlations
 Multiparton interactions
- Fluctuations and correlations
 Fluctuations and diffraction in *ep* Parton correlations
 Effects on *pp*

Nucleon structure: Hard processes in pp

• Factorization of cross section Separate $k_T^2 \sim \mu^2(\text{soft}) \longleftrightarrow M^2$ $\sigma = f_1(x_1, \mu^2) f_2(x_2, \mu^2) \times \sigma_{\text{hard}}(\mu^2, M^2)$

One-body densities of partons PDFs

• Underlying event characteristics

Many observables: Hadron number distributions, p_T , energy flow, . . .

Hard-soft correlations

• Proton as dynamical system

Partonic wave function (scale μ^2)

Physical properties: Spatial distributions, fluctuations, parton correlations, . . .

Formulated as generalizations of PDFs. Measurable in $ep/\gamma p$.

Nucleon structure: Parton picture

correlation function

• Vacuum fluctuations

Strong gluon fields of size $\mu_{\rm vac}^{-1} \ll 1 \, {\rm fm}$

Chiral symmetry breaking: $\bar{q}q$ condensate, dynamical mass generation, π as collective mode

- Slow-moving nucleon $P \sim \mu_{\rm vac}$
 - $t \rightarrow i \tau$ statistical mechanics $\langle N | O | N \rangle$ from correlation functions

No concept of "particle content"

• Fast-moving nucleon $P \gg \mu_{\rm vac}$

Closed system: Wave function description Feynman, Gribov. Alt: Light-front quantization

Components with different particle number

Many-body system: Constituents, interactions, spatial structure, orbital motion, . . .

QCD: UV divergences, renormalization, scale dependence \leftrightarrow factorization

Nucleon structure: Many-body system

x > 0.1 Valence quarks: Source, quantum numbers Also gluons

 $\sim 10^{-1..2} \qquad \begin{array}{l} \mbox{Sea quarks, gluons:} \\ \mbox{Quantum numbers} \\ \mbox{Generated by non-pert. interactions} \end{array}$

 $x < 10^{-2}$ Gluons, singlet sea: Radiatively generated

• Physical properties

Number densities incl. spin/flavor PDFs

Transverse spatial distributions GPDs

Orbital motion, ang. momentum TMDs

Quantum fluctuations: Dispersion

Multiparton correlations MPDs, GPDs

Densities with operator definition $\langle N | \mbox{QCD-Op} | N \rangle$ Calculable with non–perturbative methods Scale dependence from RNG equation.

Transverse distributions: Exclusive processes

• Hard exclusive meson production

Meson produced in small–size $q\bar{q}$ configuration

QCD factorization theorem $Q^2 \gg \mu_{
m had}^2 \sim |t|$ Collins, Frankfurt, Strikman 96

GPDs: Partonic form factor of nucleon, universal, process—independent Ji 96, Radyushkin 96

Operator definition $\langle N' | \text{twist-}2 | N \rangle$, renormalization, non-pert. methods

• Transverse spatial distribution of partons x' = x

$$f(x,oldsymbol{
ho}) = \int \! rac{d^2 \Delta_T}{(2\pi)^2} \, e^{-i oldsymbol{
ho} \Delta_T} \, \operatorname{GPD}(x,t)$$
 2D Fourier

Tomographic image of nucleon at fixed $\boldsymbol{x}\text{,}$ changes with \boldsymbol{x} and Q^2

• Large x: Quark GPDs, polarization, $x' \neq x$ JLab12: DVCS, meson production

Transverse distributions: Gluons

• Transverse distribution of gluons

Exclusive J/ψ at HERA, also $\phi,\,\rho$ $_{\rm Large}$ x: FNAL, COMPASS, JLab12 ϕ

Transverse profile from relative t-dep.

Gluonic radius from slope $\langle \rho^2 \rangle_g = 2B_{\rm excl}$

• Important observations

Gluonic radius $\langle \rho^2 \rangle_g$ much smaller than soft nucleon radius $\sim 1\,{\rm fm}^2$

Grows with effective Regge slope $\alpha'_g \approx 0.14 \, {\rm GeV}^{-2} < \alpha'_{
m soft}$ Parametrization available: Frankfurt, Strikman, CW 10

• Q^2 dep. from DGLAP evolution

Partons decay locally in transverse space

Size changes because initial partons at $x_0>x$ sit at smaller transv. distances. Small effect at $Q^2>{\rm few}~{\rm GeV}^2_{\rm FSW04}$

Transverse distributions: Applications to pp

• Hard process from parton-parton collision Local in transverse space $p_T^2 \gg ({\rm transv.\ size})^{-2}$

7

• Cross section as function of pp impact par

$$\sigma_{12}(b) = \int d^2 \rho_1 \ d^2 \rho_2 \ \delta(\boldsymbol{b} - \boldsymbol{\rho}_1 + \boldsymbol{\rho}_2) \\ \times G(x_1, \rho_1) \ G(x_2, \rho_2) \ \sigma_{\text{parton}}$$

Calculable from known transverse distributions Integral $\int d^2b$ reproduces inclusive formula

Normalized distribu $P_{12}(b) = \sigma_{12}(b) / [\int \sigma_{12}]$

• New information available

 $\underset{\text{Underlying event}}{\text{Model spectator interactions depending on } b}$

Predict probability of multiple hard processes Dynamical correlations? FSW04

Diffraction: Gap survival probability Determined largely by transverse geometry FHSW 07

Transverse distributions: Hard vs soft interactions 8

• Transverse size in soft interactions from pp elastic amplitude + unitarity

 $\sigma^{pp}_{ ext{soft inel}}(b) = 1 - |1 - \Gamma_{ ext{el}}(s, b)|^2$

 $R^2(\text{soft}) \gg \langle \rho^2 \rangle_g(x > 10^{-4})$

- two scales!
- Two classes of *pp* collisions FSW04/10 Peripheral: Most of inelastic cross section Central: High probability for hard process
- Hard processes select central collisions

Underlying event in hard processes very different from min. bias collisions

Geometric correlations: Hard process \leftrightarrow centrality \leftrightarrow event chars

New tests of dynamical mechanisms in particle production

Transverse distributions: Hard-soft correlations

CMS underlying event analysis, JHEP 1509 (2015) 137

- Underlying event activity as function of trigger $p_T^{
 m jet}$
- $p_T^{\rm jet} \sim$ few GeV: No hard process, collisions mostly peripheral, low activity
- $p_T^{\text{jet}} \gtrsim 10 \text{ GeV}$: Hard process, collisions central, high activity. Little changes with further increase of p_T^{jet} because collision already central
- Geometric correlations impact parameter as "hidden variable"

9

Transverse distributions: MPI

 $\frac{\sigma(12; 34)}{\sigma(12)\sigma(34)} = \frac{1}{\sigma_{\text{eff}}}$ $\times \frac{f(x_1, x_3)f(x_2, x_4)}{f(x_1)f(x_2)f(x_3)f(x_4)}$

- Double collision rate parametrized by $\sigma_{\rm eff}^{-1}$
- Mean field approximation

Calculable from transverse distributions

$$\sigma_{
m eff}^{-1} \, ({
m mean field}) \; = \; \int \! d^2 b \; P_{12}(b) \; P_{34}(b)$$

Reference prediction

 $\langle
ho^2
angle_g (x \sim 0.1)$ gives $\sigma_{
m eff} \sim 34$ mb

• Enhancement observed

 ${\rm CDF}/{\rm D0}$ 3jet $+~\gamma$ rate about $2\times$ larger than mean field

LHC MPI results \rightarrow this meeting

Dynamical explanation? Correlations beyond MF

• Transverse distributions of partons determine mean field expectation for MPI

Quantum fluctuations: Parton densities

• Nucleon quantum many-body system

Partonic wave function has components with different particle number, transverse size, etc.

High-energy process intercepts instantaneous configurations, interactions "frozen"

Inclusive DIS measures average parton density

Fluctuations of parton density and transverse size? Fundamental property of many-body system Frankfurt, Strikman, Treleani, CW, PRL **101**:202003, 2008

• Fluctuations of gluon density

Hard diffractive processes at small \boldsymbol{x}

Amplitude diagonal in partonic states $|n\rangle$, proportional to configurations's gluon density G_n

Fluctuations of G_n lead to dissociation Cf. soft diffraction: Good, Walker 60, Miettinen, Pumplin 78

$$\omega_g \equiv \frac{\langle G^2 \rangle - \langle G \rangle^2}{\langle G \rangle^2} = \left. \frac{d\sigma/dt \; (\gamma^* N \to VX)}{d\sigma/dt \; (\gamma^* N \to VN)} \right|_{t=0}$$

Quantum fluctuations: Sizes and MPI

• Scaling model Close et al. 83: EMC effect

Fluctuations of size change effective scale of non-pert gluon density $\mu^2({\rm gluon}) \propto R^{-2}$

Size distribution from soft cross section fluctuations $\omega_{\sigma}\sim 0.25$ at $\surd s=20\,{\rm GeV}$

Gluon density fluctuations change with $x,\,Q^2$ through DGLAP evolution

Roughly consistent with HERA data

• Fluctuation effect on MPI

Small effect of gluon density fluctuations $\omega_g < 0.1$ at Tevatron

Moderate enhancement from size fluctuations $\sigma_{\rm eff}$ (fluct) $\approx (1 - \omega_{\sigma}/2) \sigma_{\rm eff}$ (mean field) \sim 10-15% at Tevatron

Fluctuation effect on MPI small, cannot explain experimental rates

Parton correlations: QCD vacuum structure

• Parton correlations in nucleon

How is the probability to find a parton influenced by having other parton nearby? Fundamental property of many-body system: Condensed matter, nuclei

13

Multiparton distributions Blok, Dokshitzer, Frankfurt, Strikman 10; Diehl, Ostermeier, Schafer 11

$$\langle N | O_{\text{tw2}}(x_1, \boldsymbol{r}_{1T}) O_{\text{tw2}}(x_2, \boldsymbol{r}_{2T}) | N \rangle_{\boldsymbol{r}_{1T} - \boldsymbol{r}_{2T} = \boldsymbol{r}_T}$$

Subtleties: UV divergences, renormalization, mixing

• Perturbative and non-perturbative correlations

DGLAP evolution: Active parton from perturbative splitting, partner within range $r_T \sim \mu^{-1}$

Chiral symmetry breaking: Nonperturbative $q\bar{q}$ pairs with transverse size $\ll 1 \text{ fm}$ Schweitzer, Strikman, CW 12. Cf. Shuryak 82; Diakonov, Petrov 84

• Effect on MPI

Perturbative correlations can explain observed enhancement beyond mean field Review Blok, Strikman 17

Parton correlations: Dynamical model

Chiral quark-soliton model: Dynamical quark mass, semiclassical approximation in large- N_c limit Diakonov, Petrov, Polylitsa 88

Sea quark transverse momenta up to $p_T \sim \mu_{\chi \rm SB}$ Different from valence quarks $p_T \sim R^{-1}$

Correlated $q\bar{q}$ pairs in nucleon wave function: Spin/flavor structure, σ/π quantum numbers

• Signals in deep-inelastic lepton scattering?

 P_T distributions in semi-inclusive DIS $_{\rm incl.\ spin\ asymmetries,\ particle\ correlations.\ JLab12,\ COMPASS$

Particle correlations between current and target fragmentation regions $W \sim \text{few GeV to avoid DGLAP radiation. COMPASS, EIC}$

Exclusive meson production at large x Knockout of correlated $q\bar{q}$ pair. JLab12

Summary

• Nucleon as dynamical system

Quantum many-body system, wave function description Information from $ep/\gamma p$ and non-perturbative theoretical approaches

 $\bullet\,$ Transverse geometry essential aspect of pp collisions

Transverse distribution of partons from $ep/\gamma p$ (GPDs)

Hard processes select central pp collisions

Geometric correlations explain UE characteristics

• Nucleon properties determining MPI rates

Transverse distributions	reasonably well known, more data expected COMPASS, JLab12, EIC	mean-field expectation
Density/size fluctuations	rough estimates	moderate enhancement ${\sim}15\%$
Parton correlations	theoretical models, future tests in $ep?$	substantial enhancement from pert correlations

• Potential interest in nucleon structure community

Connections to exclusive processees (GPDs), semi-inclusive DIS (TMDs), higher twist Study of parton correlations "next step" after one-body densities

Supplementary material

Diffraction: Rapidity gap survival

$$S^2 = \int d^2 b \ P_{\mathsf{hard}}(b) \ \left|1 - \Gamma(b)\right|^2$$

• Central exclusive diffraction

Heavy system produced in hard two-gluon exchange

Concurrent soft spectator interactions must not produce particles Khoze, Martin, Ryskin 97+

• Survival probability S^2

Mean-field S^2 calculable from transverse gluon distn and pp elastic amplitude Model-independent, pure transverse geometry FHSW06

Basic suppression by factor $\sim 30-40$ from elimination of scattering at small $b~\sqrt{s}$ = 14 TeV

Additional suppression by factor >2-3 from dynamical correlations, black–disk regime $_{\rm Requires\ detailed\ modeling}$

• Diffraction pattern in p_{T1}, p_{T2} Experimental tests: CMS/TOTEM or LHC420 STAR pp2pp @ $\sqrt{s} = 500 \text{ GeV}$