Soft-hard correlations workshop

Michael Winn

Laboratoire de l'Accélérateur Linéaire, Orsay

Outline

Motivation

LHCb set-up

LHCb measurements

Conclusions

Motivations for soft-hard correlations

any hard scale measurement for QGP physics adresses implicitly - already pp vs. pPb vs. PbPb inclusive - or explicitly - centrality in PbPb -

a soft-hard correlation:

medium (bulk) driven by comparatively soft/semi-hard scales up to O(1 GeV) in $m/p_{\rm T}$

▶ in AA to us heavy-ion physicists "natural":

- empirically confirmed arguments like centrality-multiplicity corr., large $v_{\rm 2}$ in semi-central

- however precision of ingredients not well controlled

non-inclusive as multiplicity-differential observables can bring complications at the definition level, but even more at the interpretation level

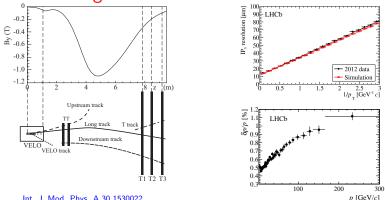
 \rightarrow goes as deep as basic concepts: centrality in AA - see ALICE bias study at Quark Matter for peripheral collisions

Motivations for soft-hard correlations

possible strategies:

1) idealisation: focus on corners, where we think to understand things e.g. broad centrality bins in most central AA, inclusive $pp \rightarrow$ fear: "otherwise lost in uncontrolled details without any outcome"

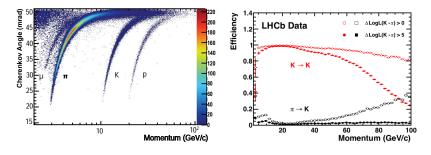
- 2) see different collision systems as limiting cases of each other
- \rightarrow "question two paradigms at once" (small systems punch line)


Not black-white: both approaches can profit from their respective insights

Motivations for soft-hard correlations

- attempt to resolve different sources of correlations in any collision system:
 "pQCD" physics: higher Fock states of proton wave function, partonic structure nuclear modifications, correlations in momentum space role of "final state interaction"
 - role of geometry motivating notion "centrality"
 - level of thermalisation
- notoriously difficult the smaller the system, the softer the scale:
 - should not include non-clear physics in observable definitions
- demand an overall consistent picture from ourselves

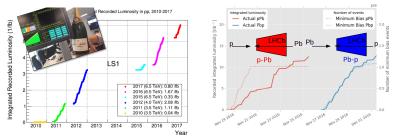
LHCb could contribute decisively in several areas.


LHCb tracking

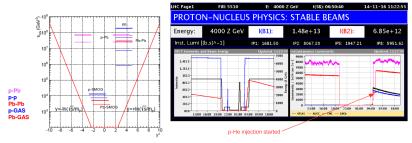
Int. J. Mod. Phys. A 30 1530022.

- \triangleright VELO: silicon strip telescope down to radial distance to beam $r = 0.8 \ cm$
- VELO+RICH1+silicon strip+ 4Tm dipole + straw tubes/silicon strips
- tracker with $\approx 30\% X_0$
- momentum resolution below 1% in wide range
- topological ID of charm and beauty hadrons down to 0 p_T : longitudinal boost
- **backward tracks without** PID/ p_T : $\Delta \eta$ up to 8-9 Bormio 2018 Michael Winn, LHCb Collaboration

LHCb particle identification



- 2 RICH systems with 2 radiators for charged track PID
- muon-ID behind calorimetry: $\varepsilon_{\mu \to \mu} \approx 97\%$ for $\varepsilon_{\pi \to \mu} \approx 1-3\%$ Mis-ID


▶ photon measurement & electron/photon-ID with calorimetry and preshower $\Delta m(\mu^+\mu^-, \mu^+\mu^-\gamma)$ -resolution: 5 MeV/ c^2 from $\chi_{c1,c2} \rightarrow J/\psi + \gamma$ -decay with calorimeter

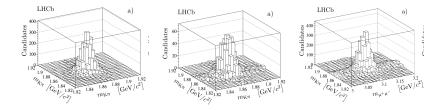
Collision systems and running conditions in collider mode

- luminosity levelling with ≈ 1 visible collisions per beam-beam encounter every 25 ns in pp: $L \approx 4 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
- 6 fb^{-1} from 2010-now at $\sqrt{s} = 0.9, 2.76, 5, 7, 8, 13$ TeV
- ▶ *p*Pb/Pb*p* 2016: running at \leq 200 kHz interaction rate with \leq 0.1 visible collisions per beam-beam encounter: 34.4 nb⁻¹ in two beam configurations at $\sqrt{s_{NN}} = 8.16$ TeV, 0.5 nb⁻¹ at $\sqrt{s_{NN}} = 5$ TeV in one configuration
- ▶ 1.6 nb⁻¹ at $\sqrt{s_{NN}} = 5$ TeV in both beam configurations accumulated in 2013
- in PbPb 2015: luminosity equivalent to about 50 million hadronic minimum bias collisions Bormio 2018 Michael Winn, LHCb Collaboration

Collision systems and running conditions in fixed-target collisions

noble gas injected in interaction region: improve luminosity measurement by beam imaging J. Instrum. 9 (2014) P12005

- residual gas pressure in beam pipe increased by 2 orders of magnitude: $O(10^{-7})$ mbar
- \blacktriangleright used for fixed target with proton and Pb beams: LHCb \approx midrapidity rapidity coverage at lower collision energies
- pHe, pAr, pNe, PbNe and PbAr data samples available
- \triangleright pAr and pHe 7.6 nb⁻¹, integrated lumi, pNe about a factor 10 more protons on target than pHe Bormio 2018 Michael Winn, LHCb Collaboration

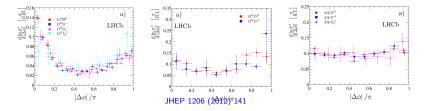

Measurements in $pp: \Xi_{cc}^{++}$ as an example

PRL 119 (2017) 112001, see also CERN seminar by Yanxi Zhang.

- an example with 6 tracks in the final state
- there is plenty useable statistics: trigger configuration suitability depends heavily on data sample and on trigger configuration, different final-state by final-state
- ion-physics interested man-power focussing at the moment on pPb and SMOG

Measurements in pp: Double charm production involving open charm

355 pb⁻¹ with 2 $< y_{D,J/psi} <$ 4 and 3 $< p_{T,D} <$ 12 GeV/c $p_{T,J/\psi} <$ 12 GeV/c JHEP 1206 (2012) 141.

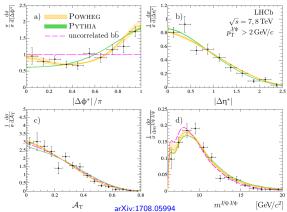

• detection of c + c or $J/\psi(c\overline{c}) + c$ -events sensitive to multiple parton scattering

• Q^2 small: large cross sections, also relative to single parton scattering

early measurement with comparatively little luminosity

Double charm pp

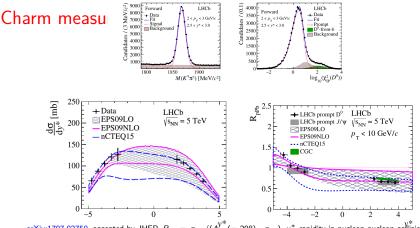
	Mode	σ [nb]	σ_{CC}/σ_{CC} [%]	$\sigma_{C_1}\sigma_{C_2}/\sigma_{C_1}$	c_z [mb]		
р	D ₀ D ₀	$690 \pm 40 \pm 70$	10.9 ± 0.8	$2 \times (42 \pm 3)$	±4)		
	$D^0\overline{D}^0$	$6230 \pm 120 \pm 630$		$2 \times (4.7 \pm 0.2)$	1 ± 0.4		
	D^0D^+	$520 \pm 80 \pm 70$	12.8 ± 2.1	47 ± 7	± 4		
	D ₀ D-	$3990 \pm 90 \pm 500$	Tero in erit	$6.0 \pm 0.2 \pm 0.5$			
	$D^0D_s^+$	$270 \pm 50 \pm 40$	15.7 ± 3.4	36 ± 8	± 4		
	D ⁰ D,-	$1680 \pm 110 \pm 240$	1011 32 011	5.6 ± 0.3	5 ± 0.6		
	$D^{0}\bar{\Lambda}_{c}^{-}$	$2010 \pm 280 \pm 600$		9 ± 2	± 1		
	D^+D^+	$80 \pm 10 \pm 10$	9.6 ± 1.6	$2 \times (66 \pm 11)$	±7)		
	D^+D^-	$780 \pm 40 \pm 130$	3.012 1.0	$2 \times (6.4 \pm 0.4)$	4 ± 0.7)		
	$D^+D_s^+$	$70 \pm 15 \pm 10$	12.1 ± 3.3	59 ± 15	$59 \pm 15 \pm 6$		
	$D^+D_s^-$	$550 \pm 60 \pm 90$	14.1.1.0.0	7 ± 1	± 1		
	$D^+\Lambda_c^+$	$60 \pm 30 \pm 20$	10.7 ± 5.9	$140 \pm 70 \pm 20$			
	$D^+\bar{\Lambda}_c^-$	$530 \pm 130 \pm 170$		15 ± 4	± 2		
fode	$\sigma_{J/\psi C} / \sigma_{J/\psi} [10^{-3}]$		$\sigma_{J/\psi C} / \sigma_C [10^{-4}]$		$\sigma_{\rm J/\psi}$	$\sigma_{\rm C}/\sigma_{\rm J/\psi C}$ [1	nb]
$/\psi D^0$	$16.2 \pm 0.4 \pm 1.3^{+3.4}_{-2.5}$		$6.7 \pm 0.2 \pm 0.5$		14.9	$\pm 0.4 \pm 1.1$	$^{+2.3}_{-3.1}$
ψD^+	$5.7 \pm 0.2 \pm 0.6^{+1.2}_{-0.9}$		$5.7\pm0.2\pm0.4$		$17.6 \pm 0.6 \pm 1.3^{+2.8}_{-3.7}$		
ΨD_s^+	$3.1 \pm 0.3 \pm 0.4^{+0.6}_{-0.5}$		$7.8 \pm 0.8 \pm 0.6$		12.8	$\pm 1.3 \pm 1.1$	$^{+2.0}_{-2.7}$
$\psi \Lambda_c^+$	4.3 ± 0	$0.7 \pm 1.2^{+0.9}_{-0.7}$	$5.5 \pm 1.0 \pm$	± 0.6	18.0	$\pm 3.3 \pm 2.1$	$^{+2.8}_{-3.8}$


• about σ_{cc} 10% of $\sigma_{c\bar{c}}$ in LHCb acceptance

J/i J/i

► assuming only double parton scattering contribution for $J/\psi + c$: similar $\sigma_{eff} = \frac{\sigma_1 \cdot \sigma_2}{\sigma_{12}}$ as in extractions at ATLAS/CMS/CDF at higher Q^2

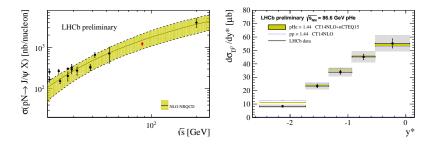
production ratios & correlations: information about process contributions Bormio 2018 Michael Winn, LHCb Collaboration 11/17


$bar{b}$ -correlation via non-prompt J/ ψ

correlation decribed by Pythia (LO) and POWHEG (NLO)

• no large contribution from gluon splitting in contrast to $c\bar{c}$ measurement by LHCb J. High Energy Phys., 06 (2012) 141: no prominent peak at $\Delta \phi = 0$

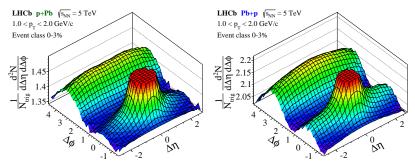
measurement based on 3 fb⁻¹ at 7 and 8 TeV: future measurements for better discrimination power


arXiv:1707.02750, accepted by JHEP, $R_{pA} = \sigma_{pA} / (A_{Pb}^{\gamma *}(= 208) \cdot \sigma_{pp})$, y^* rapidity in nucleon-nucleon collision frame, $y^* = y_{lab} - (+)0.465$ for forward (backward) configuration.

• sensitive to gluons down to $x = 10^{-5}$

- consistent with CGC and nuclear PDFs, coh. e-loss to be calculated
- more precise than present nPDF uncertainty: looking forward for global fit and consistency tests with prompt and non-prompt J/ψ-data from LHCb arXiv:1706.07122, accepted by PLB

• only 5 TeV with Λ_C and D^0 : about 20 times larger lumi 2016 at 8.16 TeV! Bormio 2018 Michael Winn, LHCb Collaboration 13/17


D^0 and J/ψ production in pHe fixed target

LHCb-PAPER-2018-022, in preparation.

- production meausurements in pHe and in pAr
- roughly 10 times larger pNe data set to be analysed
- ▶ starting point for future ion-ion collisions: open charm & charmonium down to 0 $p_{\rm T}$ at $\sqrt{s_{NN}} = 69$ GeV
- in particular in pNe differential studies as function of multiplicity could be envisaged

Non-inclusive measurements example: LHCb di-hadron correlations in *p*Pb collisions

Phys. Lett. B 762 (2016) 473-483.

- unique forward acceptance with full tracking
- qualitative agreement with mid-rapidity findings by ALICE, ATLAS and CMS in high multiplicity events
- ▶ significant difference between lead and proton fragmentation side, when comparing same fraction of events based on multiplicity in experimental acceptance $2.0 < \eta < 4.9$

▶ so far measurements this and the HBT *pp* measurement only multiplicity Bormio 2018differentïän resultsennational since main dependence to be investigated //7

Current logic and line of thought

- ▶ focus is "completion" of inclusive measurements: accessible quarkonium states also apart from vector states, b-hadrons and c-hadrons including baryons, c + c̄-correlations, photons, Drell-Yan, charged particles → clear observable definition, unique acceptance and often unique performance
- second step: define observables that make use of heavy-flavour and charged tracks in same acceptance: multiplicity dependence of yields, production characteristics, isolation variables

Conclusions

 soft-hard correlations in core of QGP physics even implicitly in inclusive measurements

 \rightarrow intrinsic motivation from QGP physics side to understand all ingredients, otherwise: quantitative QCD matter property extraction remains very difficult \rightarrow need to develop a dialogue to find ways how to falsify and converge on a common precise picture for all description ingredients that are testable

- ► LHCb has a large potential, in particular in heavy-flavour sector in pp (largest yields recorded by any experiment, scanning full delivered luminosity at low pile-up), pPb, Pbp (unique combination of full recorded luminosity and low-p_T and precision) and SMOG (unique)
- these measurements should be done: if we as field are interested pushing the understanding the basics with precision
- these measurements will not grow on trees