Proton structure via double parton scattering

Matteo Rinaldi¹

In collaboration with :

Federico Alberto Ceccopieri², Sergio Scopetta³, Marco Traini⁴, Vicente Vento¹

¹Dep. of Theor. Physics, Valencia University, IFIC and CSIC, Valencia, Spain

²IFPA, Université de Liège, B4000, Liège, Belgium

³Dep. of Physics and Geology, Perugia University and INFN, Perugia, Italy

⁴Dep. of Physics Trento University and INFN-TIFPA, Italy

Hard-soft correlations in hadronic collisions

> Clermont-Ferrand 23 to 25 July 2018

Outlook

Introduction:

- 3D structure of the proton
- Double parton distribution functions
- Double parton correlations (DPCs) in double parton distribution functions
- dPDFs in constituent quark models, a proton "imaging" via DPS?

M.R., S. Scopetta and V. Vento, PRD 87, 114021 (2013) M.R., S. Scopetta, M. Traini and V.Vento, JHEP 12, 028 (2014) M.R., S. Scopetta, M. Traini and V.Vento, arXiv: 1806.10112

Analysis of correlations in dPDFs

M. R., S. Scopetta, M. Traini and V.Vento, JHEP 10, 063 (2016) M. R., F. A. Ceccopieri, PRD 95, no. 3, 034040 (2017)

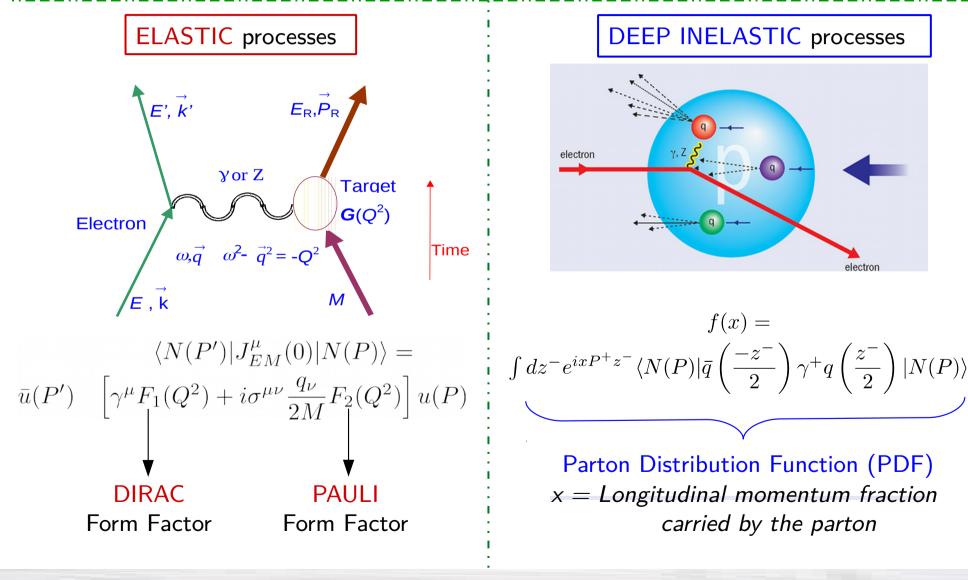
Calculation and analyses of experimental observables: effects of correlations

M. R., S. Scopetta, M. Traini and V.Vento, PLB 752, 40 (2016)
M. Traini, S. Scopetta, M. R. and V. Vento, PLB 768, 270 (2017)
F. A. Ceccopieri, M. R., S. Scopetta, PRD 95, no. 11, 114030 (2017)
M. R. and F. A. Ceccopieri, PRD 97, no. 7, 071501 (2018) rapid communication
M. R. and F. A. Ceccopieri, in preparation

Conclusions

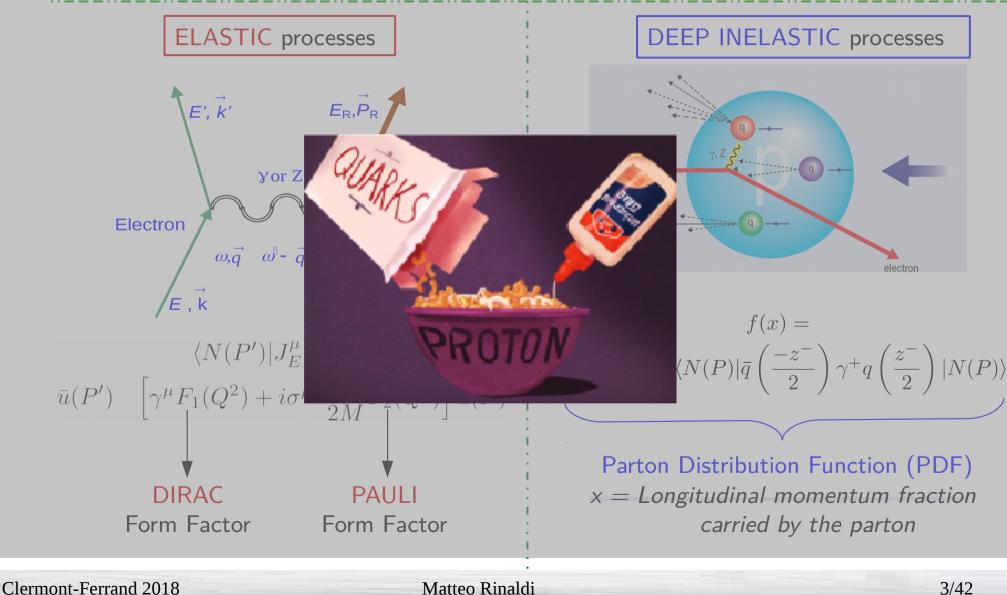
The 3D structure of the proton I

Fundamental information on the internal structure of the nucleon can be obtained by studying:



The 3D structure of the proton II

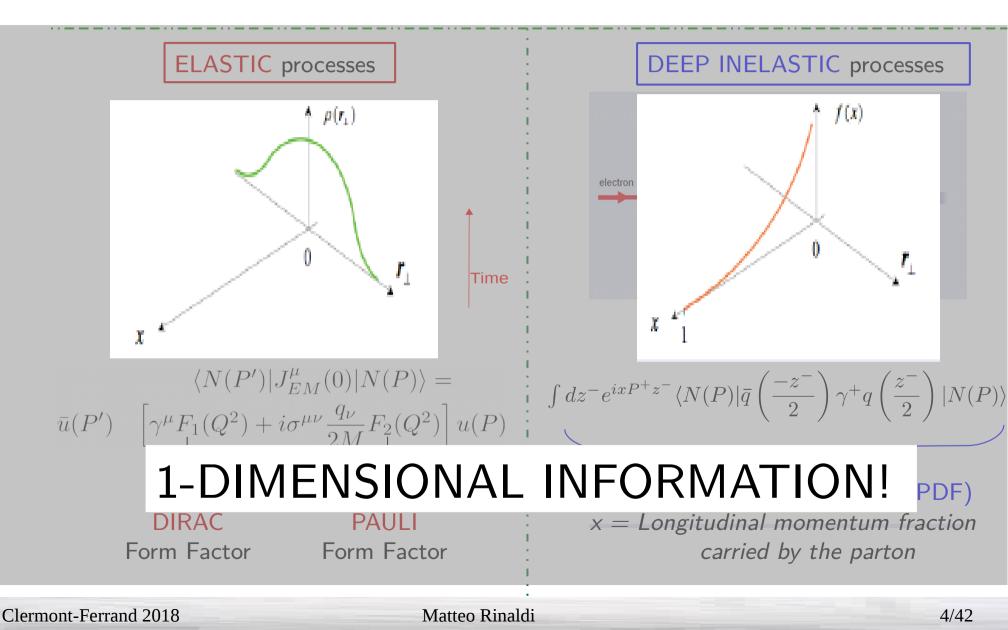
Fundamental information on the internal structure of the nucleon can be obtained by studying:

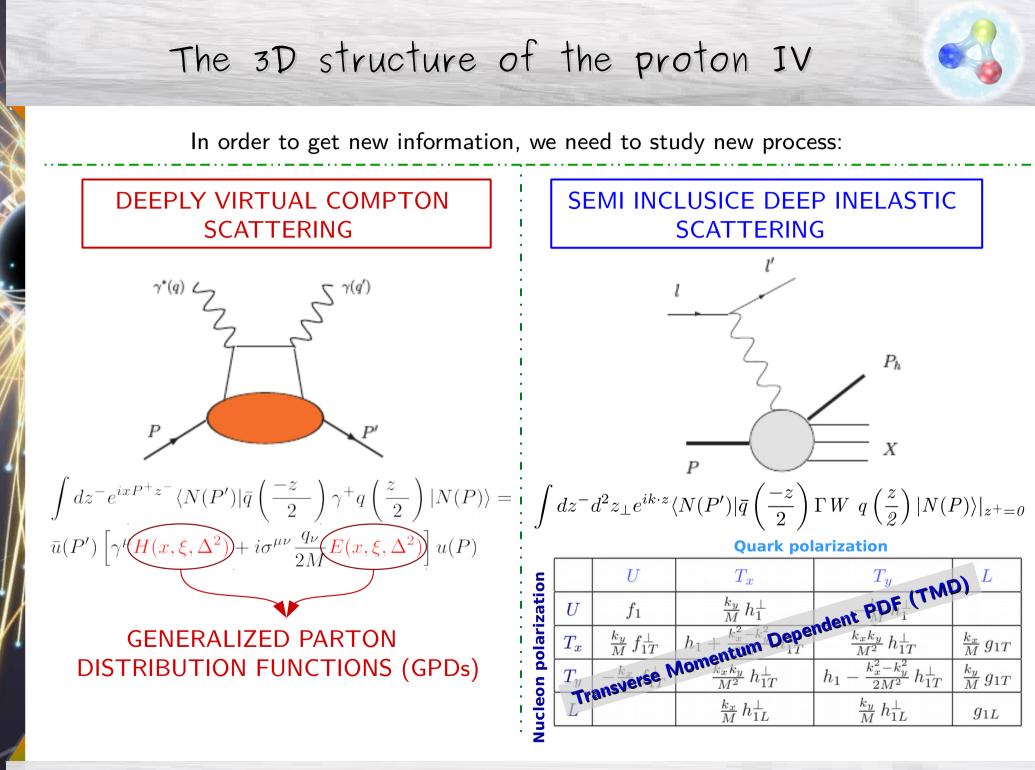


3/42

The 3D structure of the proton III

Fundamental information on the internal structure of the nucleon can be obtained by studying:

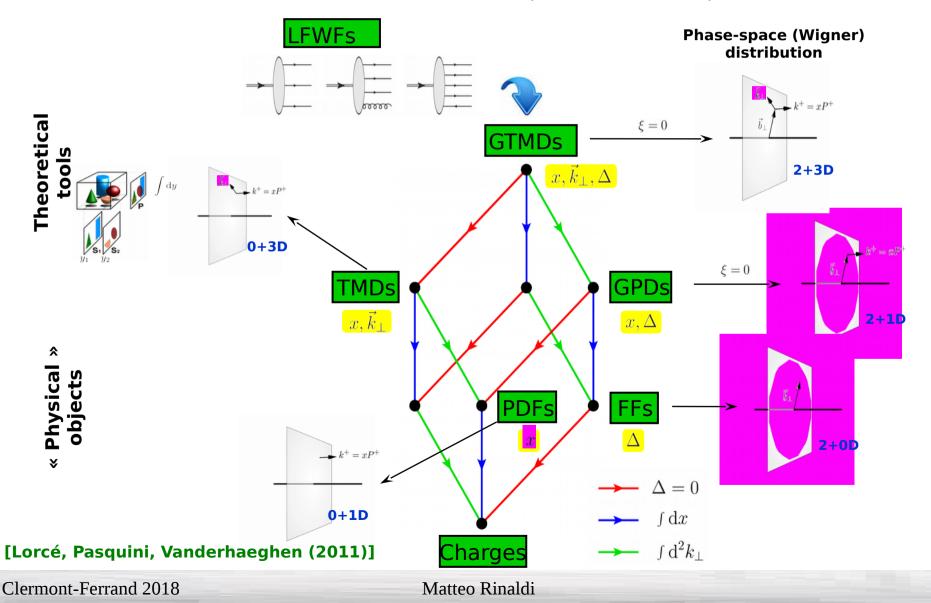




Clermont-Ferrand 2018

The 3D structure of the proton V

The 3D structure of a strongly interacting system (e.g. nucleon, nucleus..) could be accessed through different processes (e.g. SIDIS, DVCS ...), measuring different kind of parton distributions, providing different kind of information. The parton distribution puzzle is:

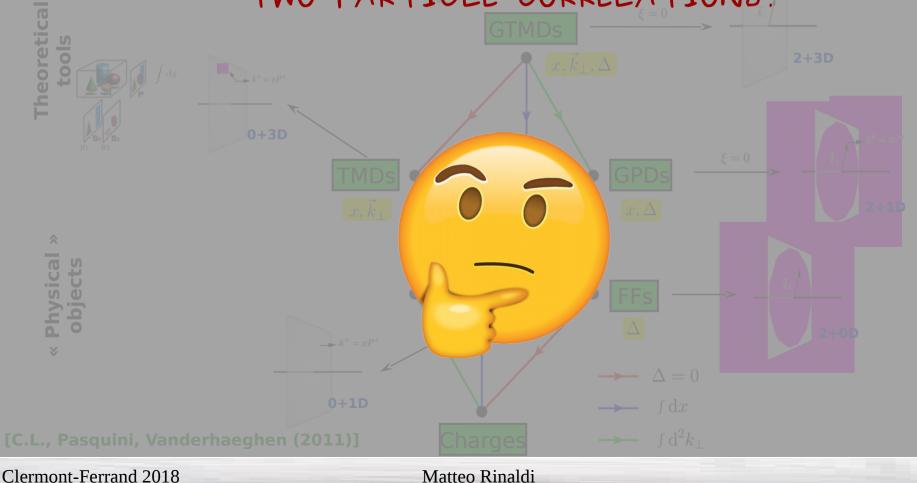


6/42

The 3D structure of the proton VI

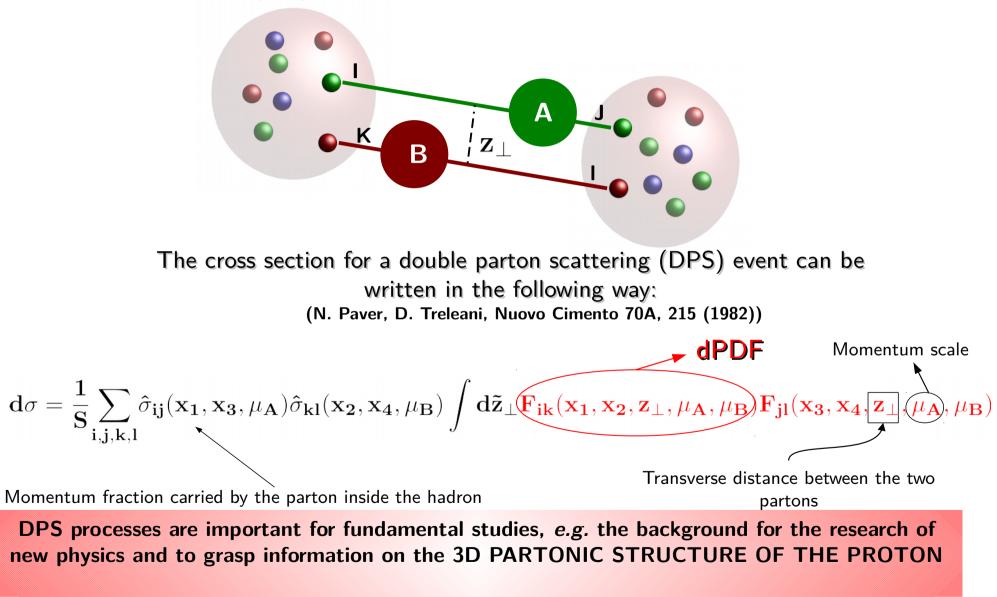
The 3D structure of a strongly interacting system (e.g. nucleon, nucleus..) could be accessed through different processes (e.g. SIDIS, DVCS ...), measuring different kind of parton distributions, providing different kind of information. The parton distribution puzzle is:

ALL THESE DISTRIBUTIONS ARE ONE-BODY FUNCTIONS: HOW CAN WE ACCESS NEW INFORMATION AS TWO PARTICLE CORRELATIONS?



Answer: MULTIPARTON interactions

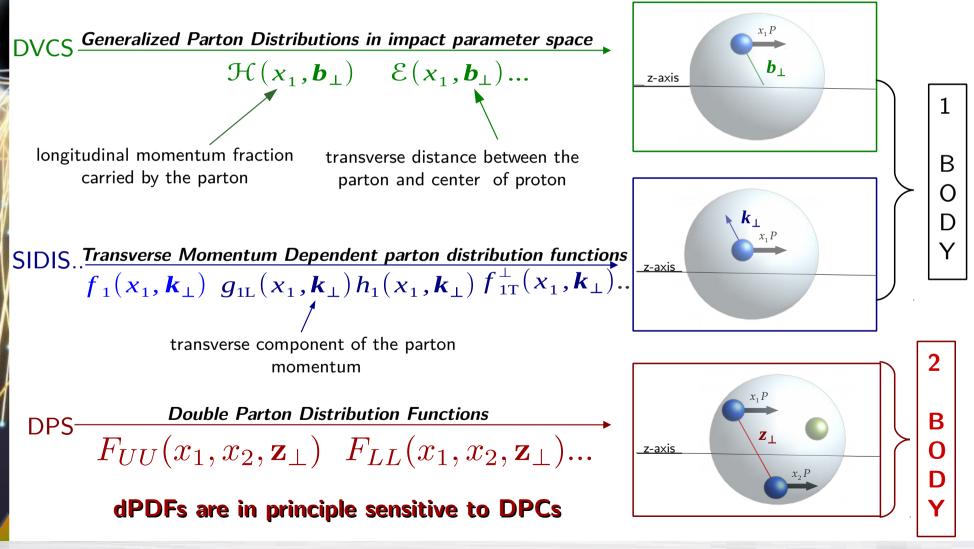
Multiparton interaction (MPI) can contribute to the, pp and pA, cross section @ the LHC:



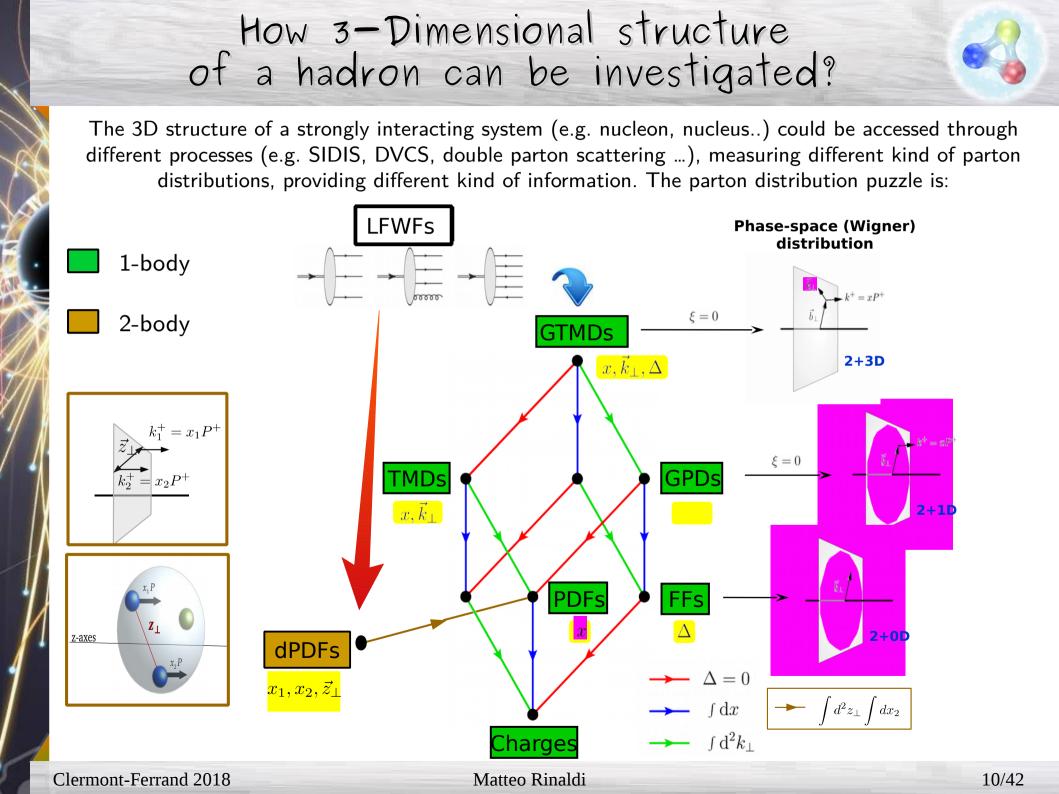
Clermont-Ferrand 2018

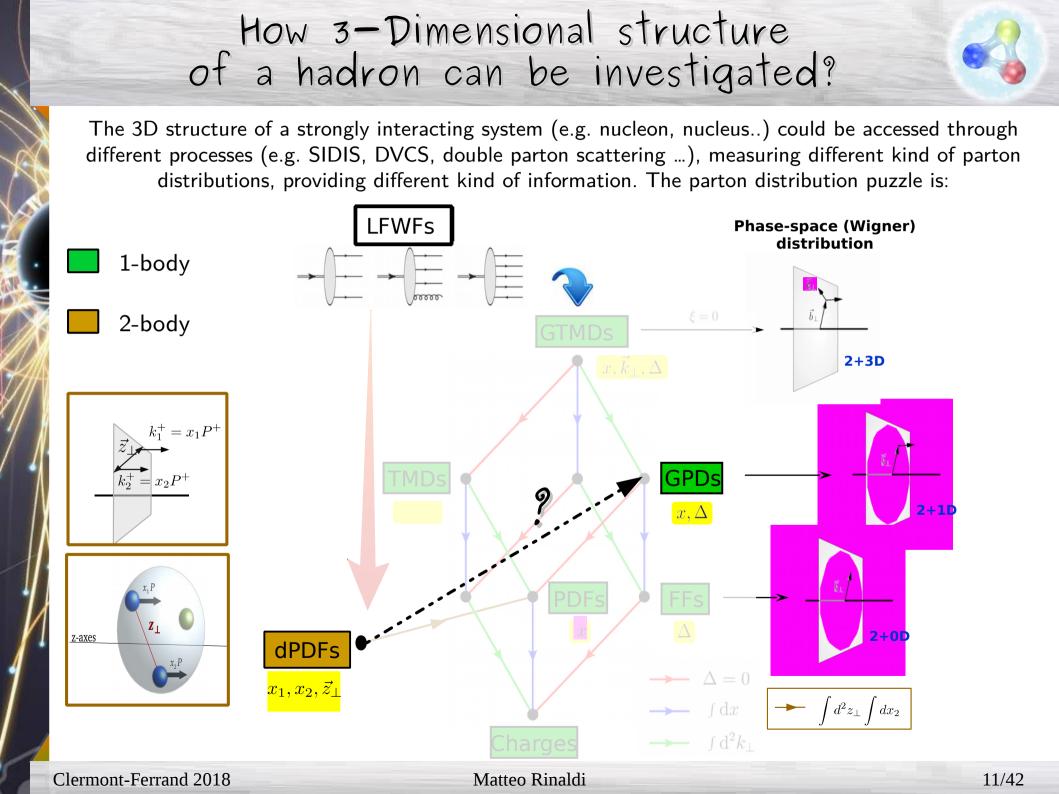
How 3-Dimensional structure of a hadron can be investigated?

The 3D structure of a strongly interacting system (e.g. nucleon, nucleus..) could be accessed through different processes (e.g. SiDIS, DVCS, double parton scattering ...), measuring different kind of parton distributions, providing different kind of information:

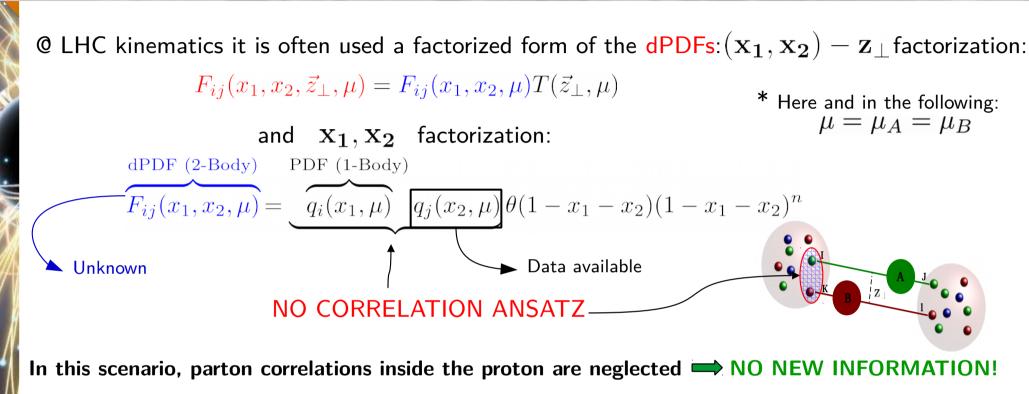


Clermont-Ferrand 2018





Parton correlations and dPDFs



BUT:

In principle, correlations are present!

dPDFs are non-perturbative quantities

HOW CAN WE BE SURE OF THE ACCURACY OF SUCH **APPROXIMATION?**

DPCs not calculated directly from QCD

WHAT CAN WE LEARN ABOUT dPDFs AND THE PROTON STRUCTURE?

Clermont-Ferrand 2018

DPCs in constituent quark models (CQM)

potential model

Main features:

effective particles

particles are strongly bound and correlated

- CQM are a proper framework to describe DPCs, but their predictions are reliable ONLY in the valence quark region at low energy scale, while LHC data are available at small x
- At very low x, due to the large population of partons, the role of correlations could be less relevant BUT theoretical microscopic estimates are necessary

pQCD evolution of the calculated dPDFs is necessary to move towards the experimental kinematics:

CQM calculations are able to reproduce the gross-feature of experimental PDFs in the valence region.

CQM calculations are useful tools for the interpretation of data and for the planning of measurements of unknown quantities (e.g., TMDs in SiDIS, GPDs in DVCS...)

> Similar expectations motivate the present investigation of dPDFs

Clermont-Ferrand 2018

The Light-Front approach I

Relativity can be implemented, for a CQM, by using a Light-Front (LF) approach yielding, among other good features, the correct support. In the Relativistic Hamiltonian Dynamics (RHD) of an interacting system, introduced by Dirac (1949), one has: $a^{\pm} = a_0 \pm a_3$ Instant Form: $t_a=0$

RHD

- E Full Poincaré covariance
- fixed number of on-mass-shell particles

Among the 3 possibles forms of RHD we have chosen the LF one since there are **several advantages**. The most relevant are the following:

- $^{\prime}$ 7 Kinematical generators (maximum number): i) three LF boosts (at variance with the dynamical nature of the Instant-form boosts), ii) \mathbf{P}^+ , \mathbf{P}_{\perp} , iii) Rotation around z.
- The LF boosts have a subgroup structure, then one gets a trivial separation of the intrinsic motion from the global one (as in the non relativistic (NR) case).
- By using the Bakamjian-Thomas construction of the Poincaré generators, it is possible to obtain a Mass equation, Schrödinger-like. A clear connection to the NR limit.
- ^r The IMF (Infinite Momentum Frame) description of DIS is easily included.

The LF approach is extensively used for hadronic studies (e.m. form factors, PDFs, GPDs, TMDs......)

Clermont-Ferrand 2018

Matteo Rinaldi

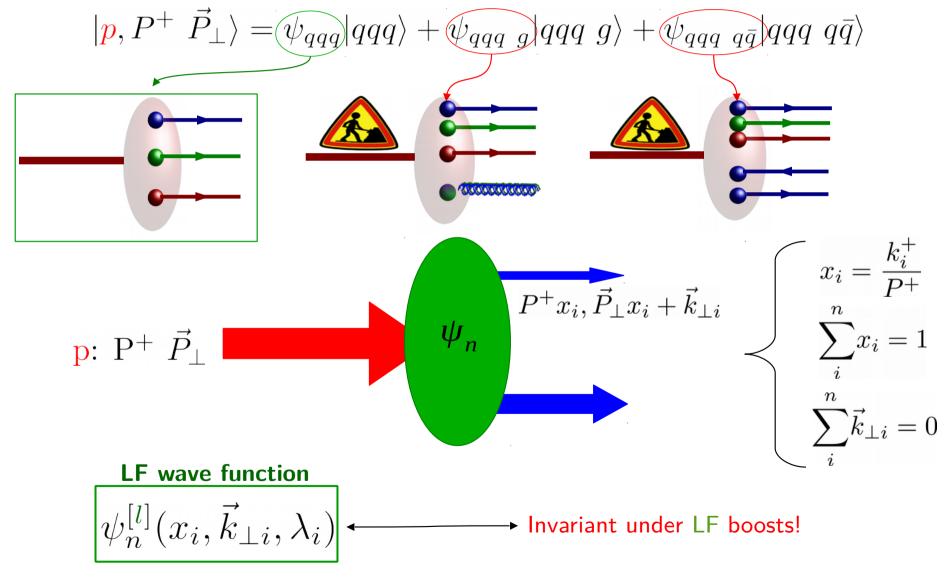
Evolution Operator: $P^0 = E$

Evolution Operator: P^-

Front Form (LF): $x^+ = t_0 + z = 0$

The Light-Front approach II

The proton wave function can be represented in the following way: see e.g.: S. J. Brodsky, H. -C. Pauli, S. S. Pinsky, Phys.Rept. 301, 299 (1998)



dPDFs in a Light-Front approach

M. R., S. Scopetta, M. Traini and V. Vento, JHEP 12, 028 (2014)

Extending the procedure developed in S. Boffi, B. Pasquini and M. Traini, Nucl. Phys. B 649, 243 (2003) for GPDs, we obtained the following expression of the dPDF in momentum space, often called ₂GPDs from the Light-Front description of quantum states in the intrinsic system:

$$F_{ij}(x_{1}, x_{2}, \vec{k}_{\perp}) = 3(\sqrt{3})^{3} \int \prod_{i=1}^{3} d\vec{k}_{i} \delta\left(\sum_{i=1}^{3} \vec{k}_{i}\right) \Phi^{*}(\{\vec{k}_{i}\}, k_{\perp}) \Phi(\{\vec{k}_{i}\}, -k_{\perp})$$
onjugate to $z_{\perp} \times \delta\left(x_{1} - \left(\frac{k_{1}^{+}}{M_{0}}\right)\right) \delta\left(x_{2} - \left(\frac{k_{2}^{+}}{M_{0}}\right)\right)$

$$M_{0} = \sum_{i} \sqrt{\vec{k}_{i}^{2} + m^{2}}$$

$$M_{0} = \sum_{i} \sqrt{\vec{k}_{i}^{2} + m^{2}}$$

$$M_{0} = \sum_{i} \sqrt{\vec{k}_{i}^{2} + m^{2}}$$

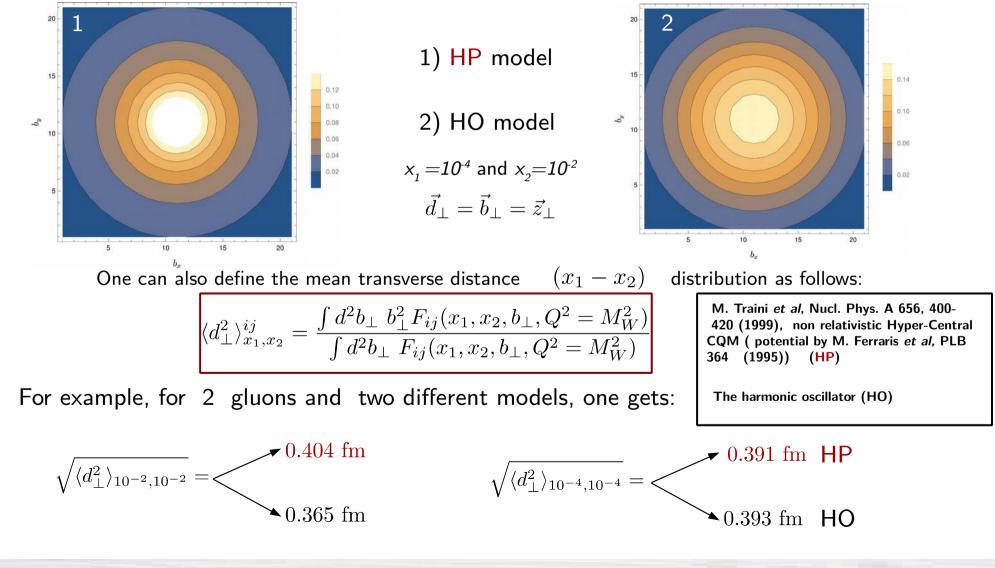
$$K_{1} + x_{2} > 1 \Rightarrow F_{ij}(x_{1}, x_{2}, k_{\perp}) = 0$$

$$\Phi(\{\vec{k}_{i}\}, \pm k_{\perp}) = \Phi\left(\vec{k}_{1} \pm \frac{\vec{k}_{\perp}}{2}, \vec{k}_{2} \mp \frac{\vec{k}_{\perp}}{2}, \vec{k}_{3}\right)$$
Now we need a model to properly describe the hadron wave function in order to estimate the LF gPDs
$$\Phi(\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}) = O^{\dagger 1/2}(R_{il}(\vec{k}_{1})) D^{\dagger 1/2}(R_{il}(\vec{k}_{2})) D^{\dagger 1/2}(R_{il}(\vec{k}_{3})) \psi^{[i]}(\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3})$$
Melosh operator rotates canonical spin in LF one
$$M_{1} = \frac{1}{2} \int_{0}^{1} \frac{1}{2} \int_{0}^{$$

Clermont-Ferrand 2018

What we would like to learn: partonic mean distance M. R. and F. A. Ceccopieri, in preparation

SOON Since, in coordinates space, dPDFs get a number density interpretation, in principle one can calculated the mean distance between partons! For example, for 2 gluons perturbatively generated:

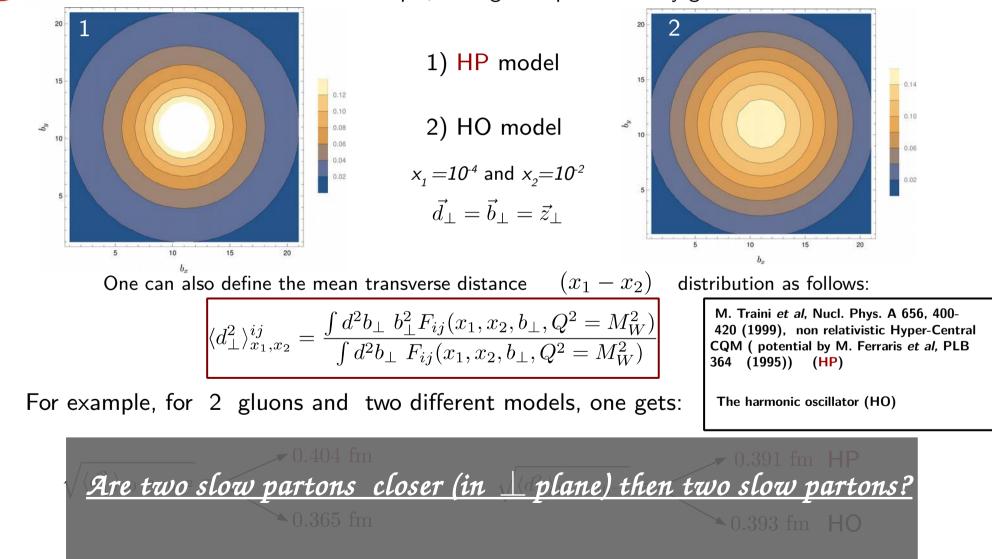


Clermont-Ferrand 2018

C2 314374

What we would like to learn: partonic mean distance M. R. and F. A. Ceccopieri, in preparation

Since, in coordinates space, dPDFs get a number density interpretation, in principle one can calculated the mean distance between partons! For example, for 2 gluons perturbatively generated:



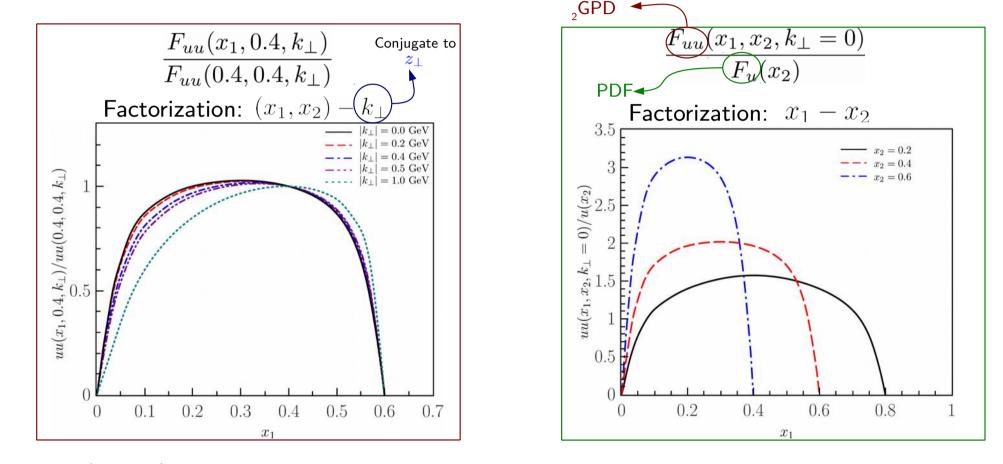
Clermont-Ferrand 2018

C. Hat

500

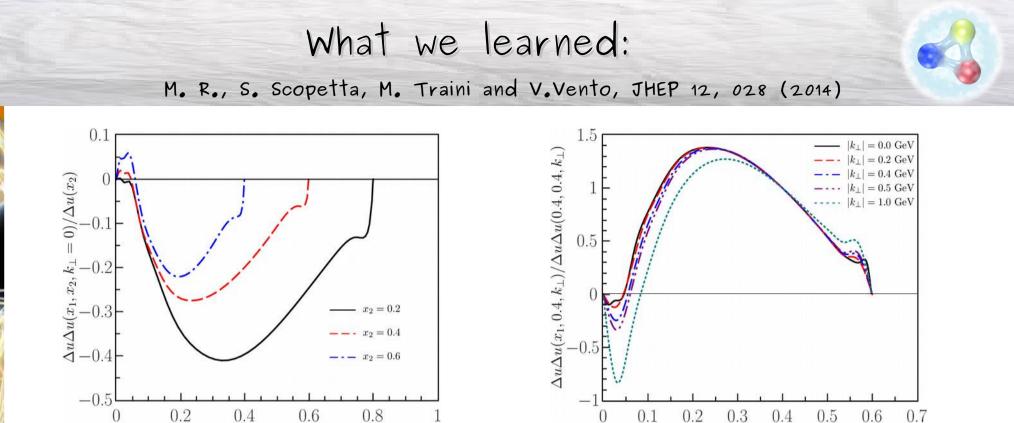
What we learned: M. R., S. Scopetta, M. Traini and V. Vento, JHEP 12, 028 (2014)

Here, ratios, sensitive to correlations, are shown in order to test the factorization ansatz! Use has been made of relativistic Hyper-Central CQM.



 ${f :}$ The $(x_1,x_2)-k_\perp$ and x_1-x_2 factorizations are violated!

The factorization ansatz is basically violated in <u>all quark model analyses</u>! M.R., S. Scopetta and V. Vento, PRD 87, 114021 (2013) H.-M. Chang, A.V. Manohar, and W.J. Waalewijn, PRD 87, 034009 (2013)



$$u_{\uparrow(\downarrow)}u_{\uparrow(\downarrow)}(x_1, x_2, k_{\perp})3(\sqrt{3})^3 \int \prod_{i=1}^3 d\vec{k}_i \delta\left(\sum_{i=1}^3 \vec{k}_i\right) \delta\left(x_1 - \frac{k_1^+}{M_0}\right) \delta\left(x_2 - \frac{k_2^+}{M_0}\right) \Phi^*(\{\vec{k}_i\}, k_{\perp}) \frac{1 \pm \sigma_3(1)}{2} \frac{1 \pm \sigma_3(2)}{2} \Phi(\{\vec{k}_i\}, -k_{\perp})$$

Here we have calculated: $\Delta u \Delta u(x_1, x_2, k_{\perp}) = \sum u_i u_i - \sum u_i u_j; \qquad |\Delta u \Delta u| \le uu$

(defined in M. Diehl et Al, JHEP 03, 089 (2012), M. Diehl and T. Kasemets, JHEP 05, 150 (2013)) $i = \uparrow, \downarrow$ $i = \uparrow, \downarrow$ $i = \uparrow, \downarrow$ $i \neq j = \uparrow, \downarrow$ Positivity bound

 x_1

This particular distribution, different from zero also in an unpolarized proton, contains more information on spin correlations, which could be important at small x and large t (LHC) !

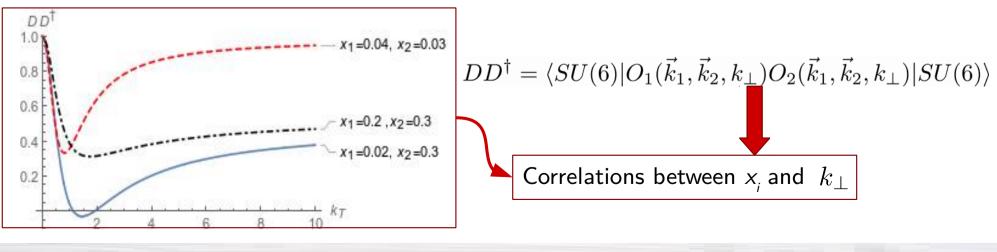
Also in this case, both factorizations, $x_1 - x_2$ and $(x_1, x_2) - k_{\perp}$ are strongly violated!

Matteo Rinaldi

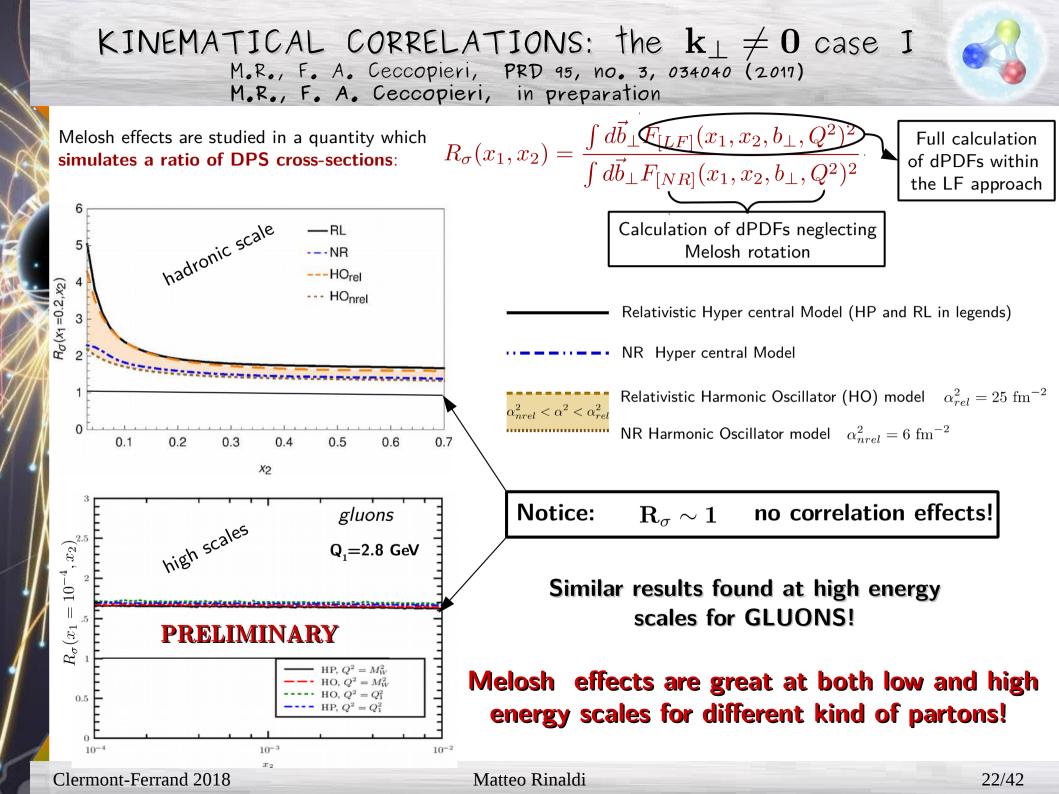
 x_1

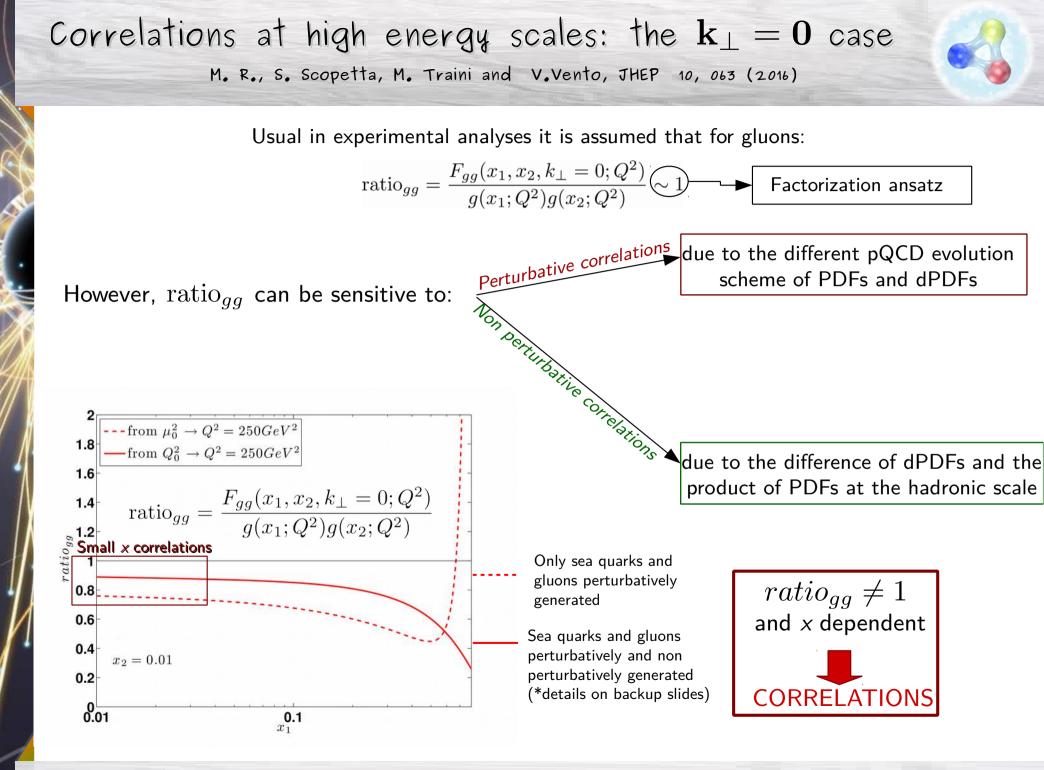
KINEMATICAL CORRELATIONS: the $\mathbf{k}_{\perp} \neq \mathbf{0}$ case I M.R., F. A. Ceccopieri, PRD 95, no. 3, 034040 (2017) The expressions of dPDF in the canonical (e.g. NR limit) and LF forms are quite similar for small values of x_i : $F_{[NR]}(x_1, x_2, k_{\perp}) = \int d\vec{k}_1 d\vec{k}_2 f(\vec{k}_1, \vec{k}_2, k_{\perp}) \delta\left(x_1 - \frac{k_1^+}{M_P}\right) \delta\left(x_2 - \frac{k_2^+}{M_P}\right)$ $F_{[LF]}(x_1, x_2, k_{\perp}) = \int d\vec{k}_1 d\vec{k}_2 f(\vec{k}_1, \vec{k}_2, k_{\perp}) \langle SPIN | O_1(\vec{k}_1, \vec{k}_2, k_{\perp}) O_2(\vec{k}_1, \vec{k}_2, k_{\perp}) SPIN \rangle$ $\times \quad \delta\left(x_1 - \frac{k_1^+}{M_0}\right)\delta\left(x_2 - \frac{k_2^+}{M_0}\right)$ **Melosh Operators!** No constant quantities. They depend on momentum $f(\vec{k}_1, \vec{k}_2, k_\perp) =$ product of the canonical proton wave-functions of partons!

For very small values of x_1 and x_2 , the main difference in the two approaches, in the calculation of dPDF, is due to Melosh operators!



Clermont-Ferrand 2018





What we would like to learn: A link between dPDFs and GPDs?

The dPDF is formally defined through the Light-cone correlator:

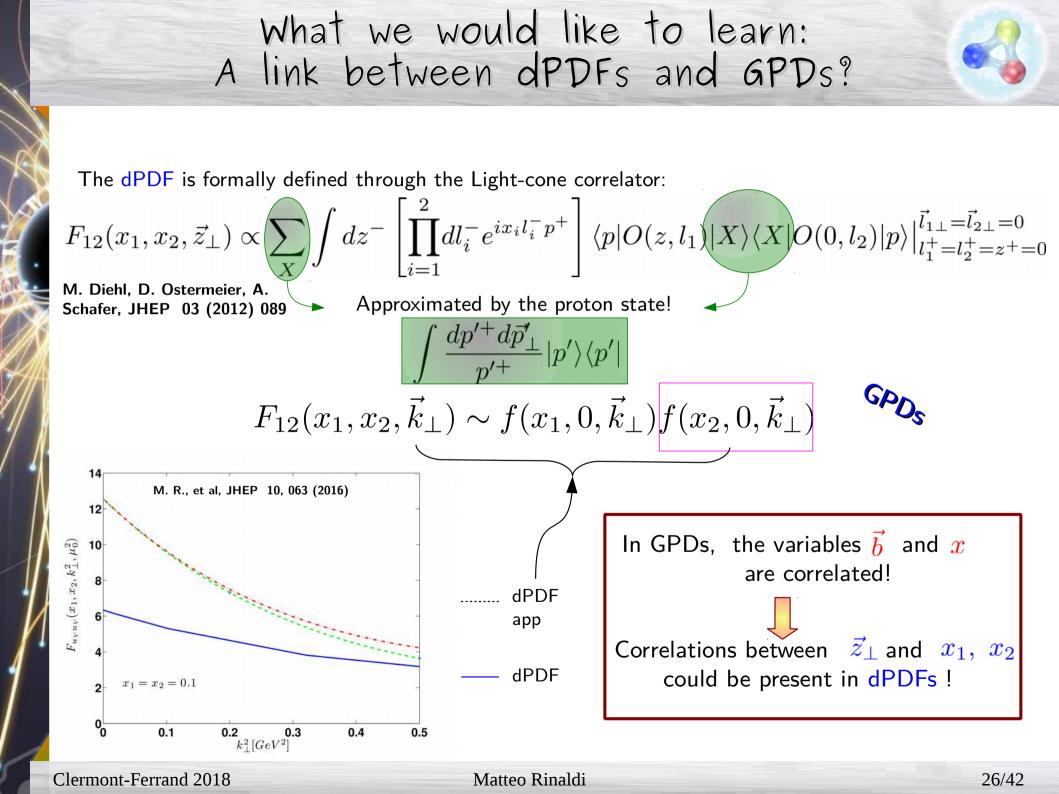
$$F_{12}(x_1, x_2, \vec{z}_{\perp}) \propto \int dz^{-} \left[\prod_{i=1}^{2} dl_i^{-} e^{ix_i l_i^{-} p^{+}} \right] \langle p|O(z, l_1)O(0, l_2)|p\rangle \Big|_{l_1^{+} = l_2^{+} = z^{+} = 0}^{\vec{l}_{1\perp} = \vec{l}_{2\perp} = 0}$$

What we would like to learn:
A link between dPDFs and GPDs?
The dPDF is formally defined through the Light-cone correlator:

$$F_{12}(x_1, x_2, \vec{z_{\perp}}) \propto \sum_{x} \int dz^{-} \left[\prod_{i=1}^{2} dl_i^{-} e^{ix_i l_i^{-} p^+} \right] \langle p|O(z, l_1)|X \rangle \langle X \rangle O(0, l_2)|p \rangle | \vec{l_{1\perp}} = \vec{l_{2\perp}} = 0$$
M. Diehl, D. Ostermeier, A.
Schafer, JHEP 03 (2012) 089
Approximated by the proton state!

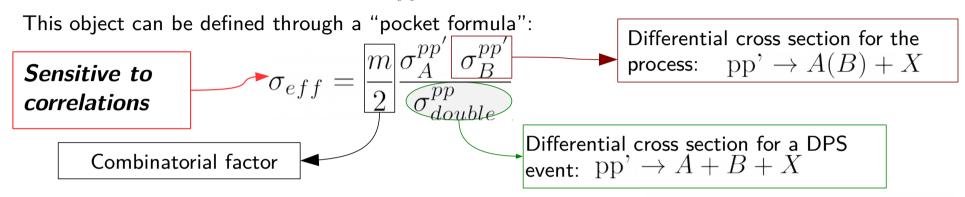
$$\int \frac{dp' + d\vec{p'_{\perp}}}{p'^{+}} |p' \rangle \langle p'|$$
GPDS depending on the
impact parameter the
 $F_{12}(x_1, x_2, \vec{z_{\perp}}) \sim \int d\vec{b} \tilde{f}(x_1, 0, \vec{b} + \vec{z_{\perp}}) \tilde{f}(x_2, 0, \vec{b})$

2



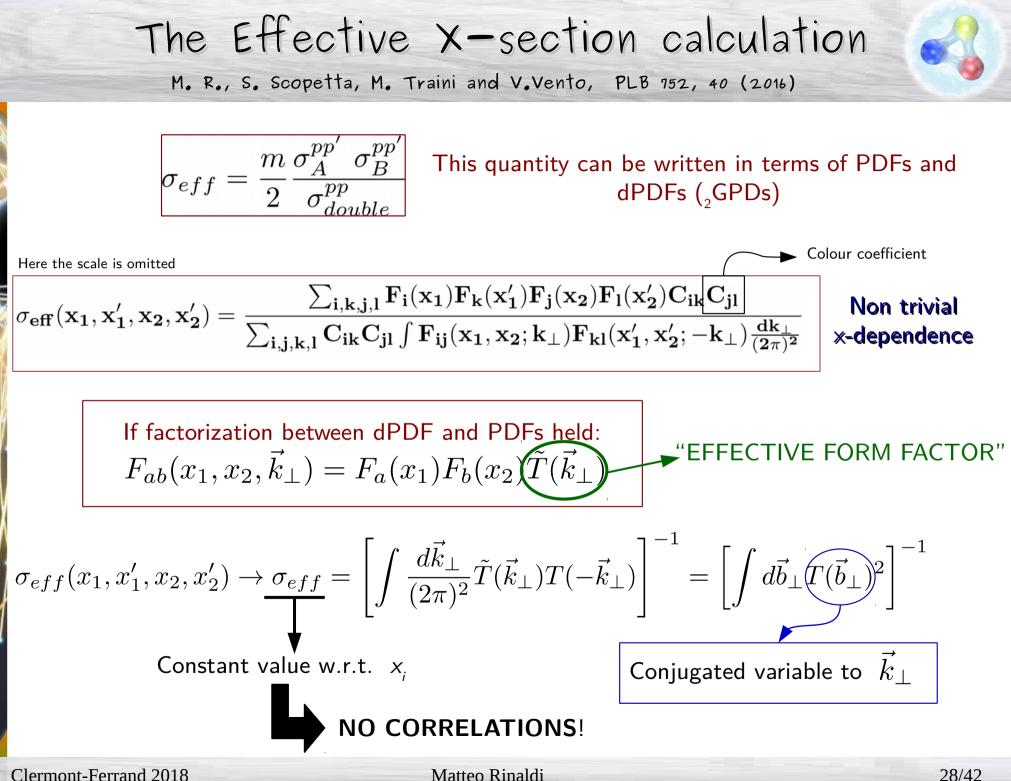
The Effective X-section

A fundamental tool for the comprehension of the role of DPS in hadron-hadron collisions is the so called "effective X-section": σ_{eff}

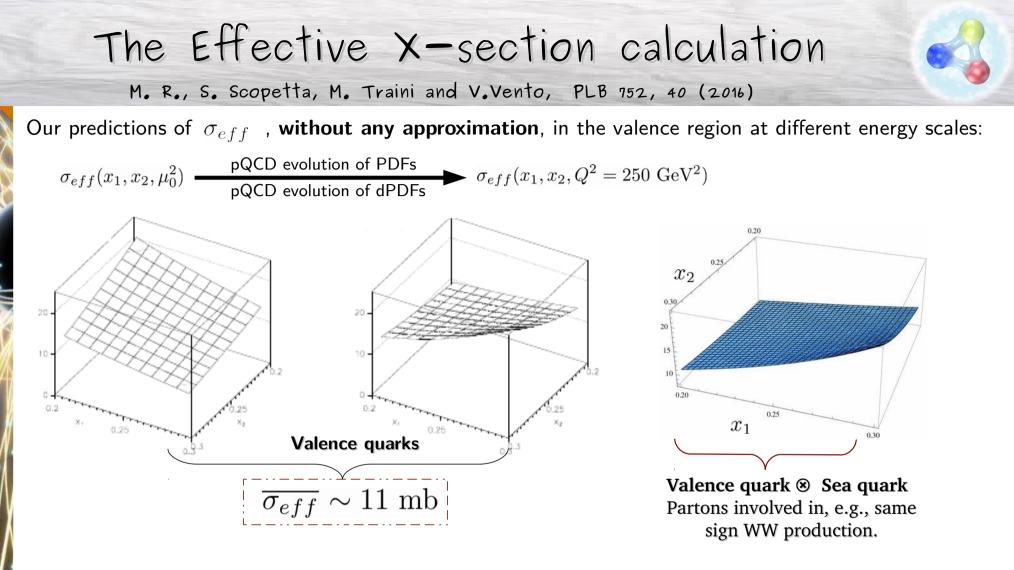


[qm] CMS (W + 2 jets) EXPERIMENTAL STATUS: - ATLAS (W + 2 jets) CDF (4 iets) Difficult extraction, approved analysis for the same CDF (γ + 3 jets) Corrected CDF (y + 3 jets) sign W's production @LHC (RUN 2) D0 (y + 3 jets) UA2 (4 jets - lower limit) ullet the model dependent extraction of $-\sigma_{eff}$ from data AFS (4 jets - no errors given) is consistent with a "constant", nevertheless there 20 are large errorbars (uncorrelated ansatz assumed!) 15 \bigcirc different ranges in X_i accessed in different 10 experiments. 0.1 0.2 0.04is [TeV] Within our CQM framework, we can calculate σ_{eff} without any approximations, studying the effect of correlations directly on $\sigma_{\rm eff}$

Clermont-Ferrand 2018



Clermont-Ferrand 2018

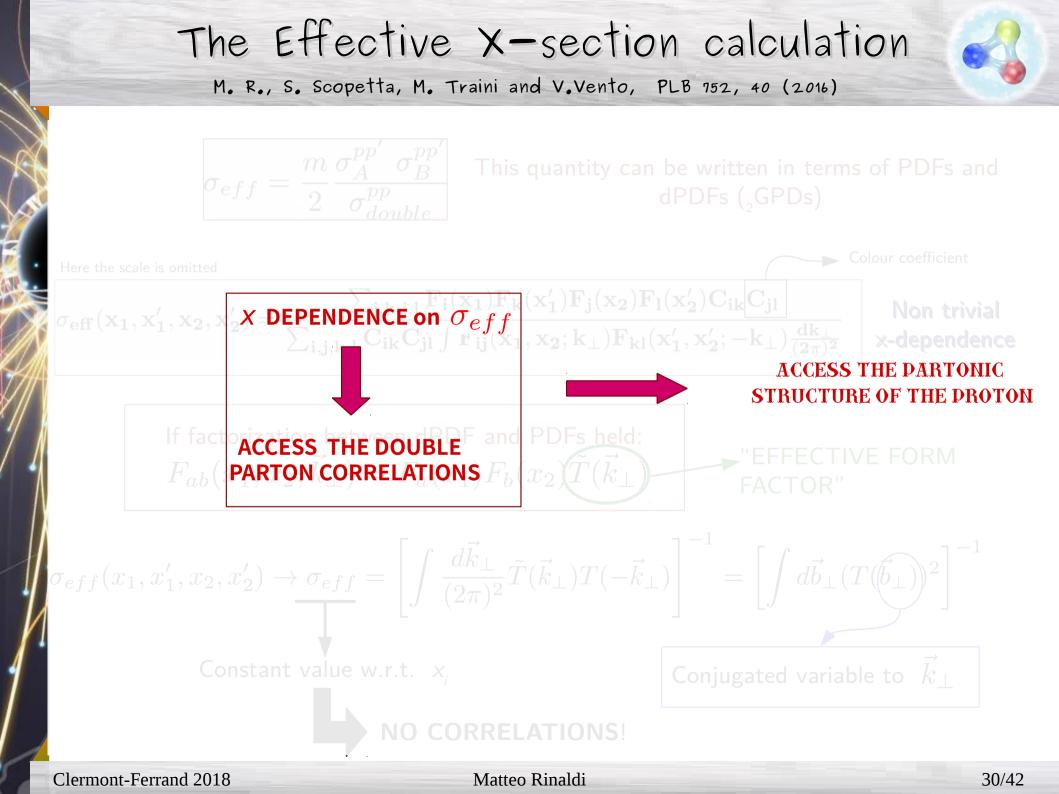


Similar results obtained with dPDFs calculated within AdS/QCD soft-wall model M. Traini, M. R., S. Scopetta and V.Vento, PLB 768, 270 (2017)

 \gg x, dependence of σ_{eff} may be model independent feature

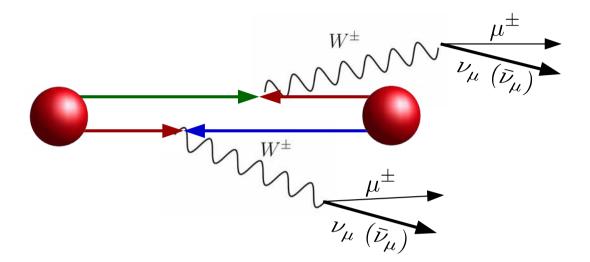
> Absolute value of $\sigma_{\rm eff}$ is a model dependent result

The old data lie in the obtained range of σ_{eff}

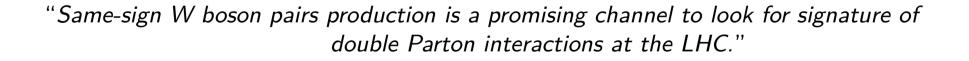


Same sign W's in pp collisions at $\sqrt{s} = 13$ TeV at the LHC

F. A. Ceccopieri, M. R., S. Scopetta, Phys. Rev. D95 (2017) no.11, 114030



In this channel, the single parton scattering (usually dominant w.r.t to the double one) starts to contribute to higher order in strong coupling constant.



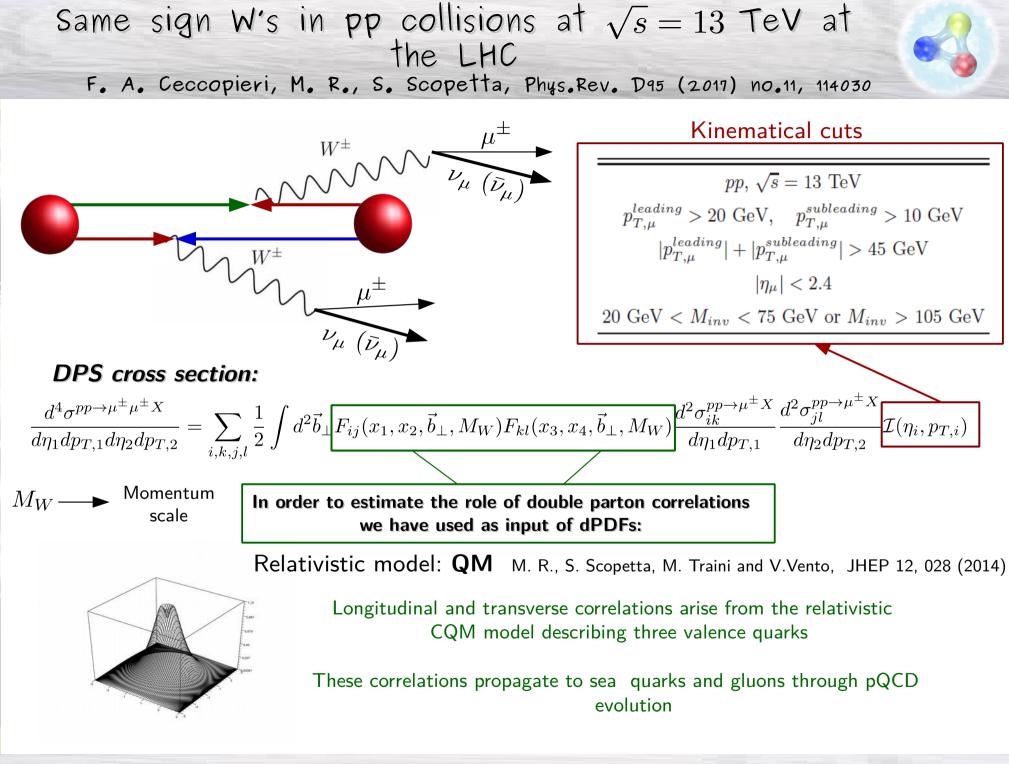
Same sign W's in pp collisions at $\sqrt{s} = 13$ TeV at the LHC

F. A. Ceccopieri, M. R., S. Scopetta, Phys. Rev. D95 (2017) no.11, 114030

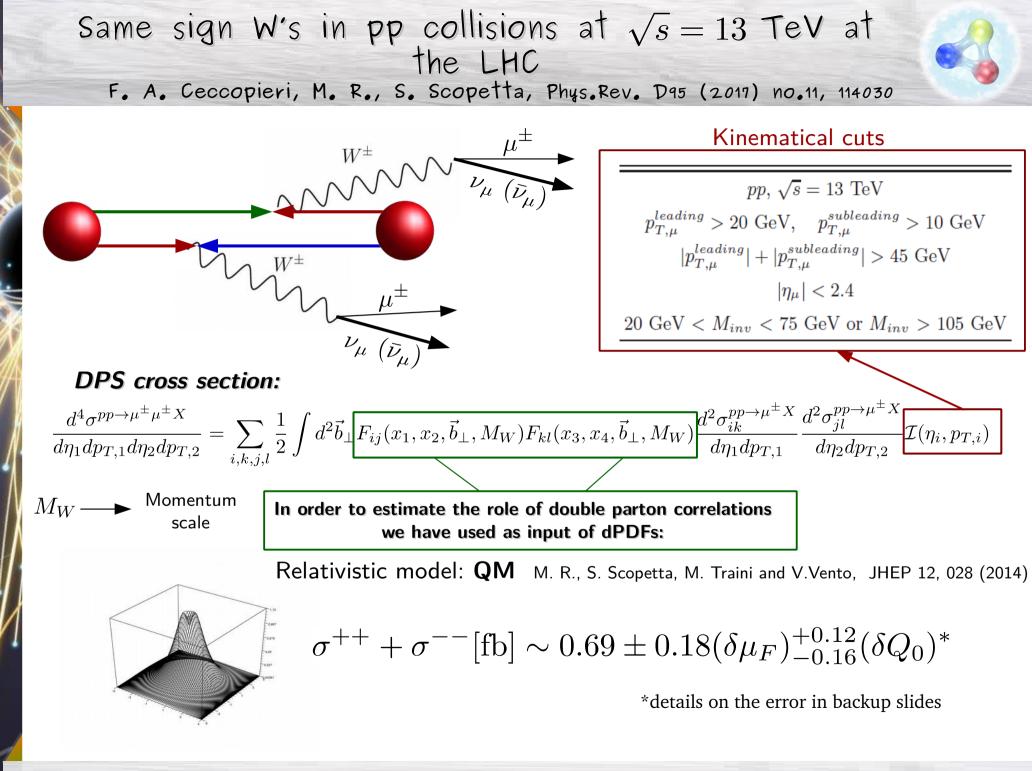


In this channel, the single parton scattering (usually dominant w.r.t to the double one) starts to contribute to higher order in strong coupling constant.

Can double parton correlations be observed for the first time in the next LHC run ?



Clermont-Ferrand 2018

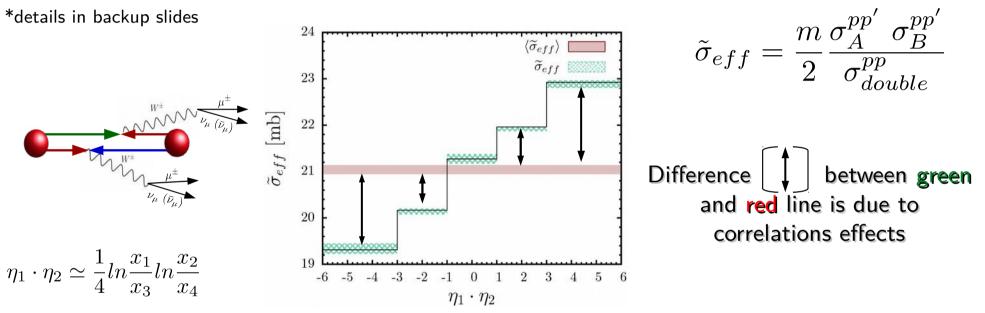


Clermont-Ferrand 2018

Same sign W's in pp collisions at
$$\sqrt{s} = 13$$
 TeV at
the LHC
F. A. Ceccopieri, M. R., S. Scopetta, Phys.Rev. D95 (2017) no.11, 114030

In order to understand whether correlations can be accessed in experimental observations, using dPDF evaluated within the QM model, the effective cross section has been calculated for this process and compared with its mean value:

 $\langle \tilde{\sigma}_{eff} \rangle = 21.04 \, {}^{+0.07}_{-0.07} \, (\delta Q_0) \, {}^{+0.06}_{-0.07} (\delta \mu_F) \, \mathrm{mb} \; .$



"Assuming that the results of the first and the last bins can be distinguished if they differ by 1 sigma, we estimated that

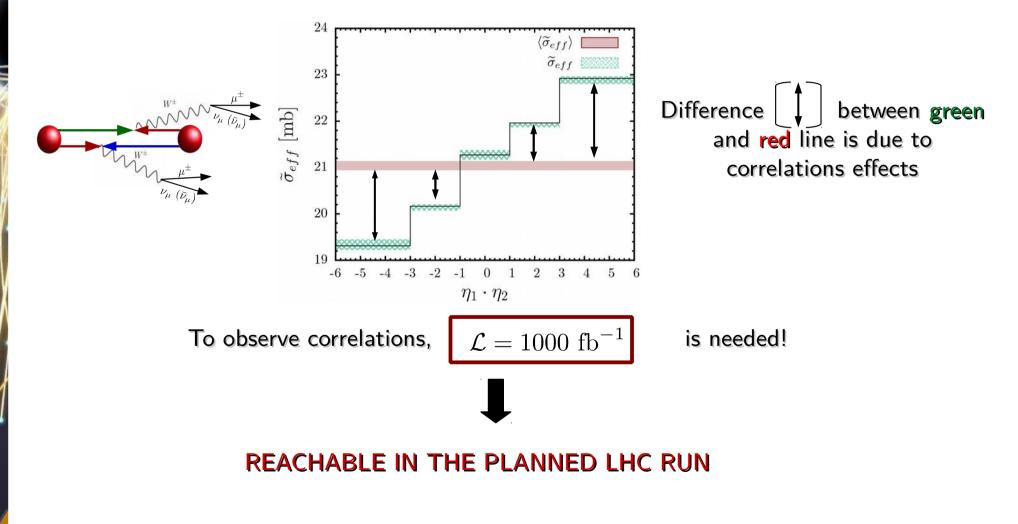
 $\mathcal{L} = 1000 \text{ fb}^{-1}$

is necessary to observe correlations"

Same sign W's in pp collisions at
$$\sqrt{s} = 13$$
 TeV at
the LHC
F. A. Ceccopieri, M. R., S. Scopetta, Phys.Rev. D95 (2017) no.11, 114030

In order to understand whether correlations can be accessed in experimental observations, using dPDF evaluated within the QM model, the effective cross section has been calculated for this process and compared with its mean value:

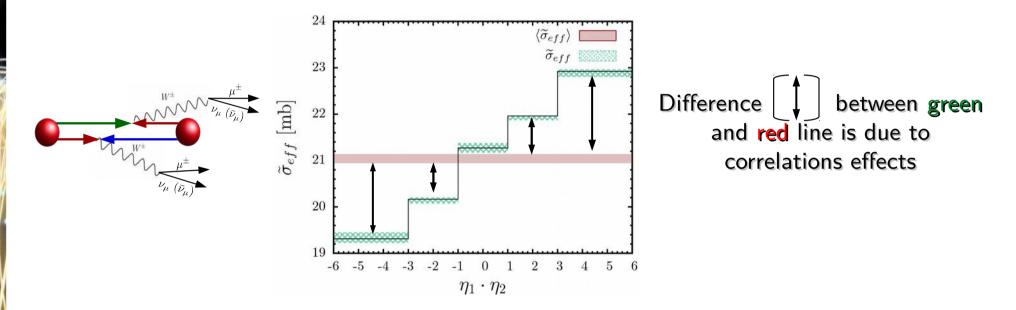
 $\langle \tilde{\sigma}_{eff} \rangle = 21.04 \, {}^{+0.07}_{-0.07} \, (\delta Q_0) \, {}^{+0.06}_{-0.07} (\delta \mu_F) \, \mathrm{mb} \; .$



Same sign W's in pp collisions at
$$\sqrt{s} = 13$$
 TeV at
the LHC
F. A. Ceccopieri, M. R., S. Scopetta, Phys.Rev. D95 (2017) no.11, 114030

In order to understand whether correlations can be accessed in experimental observations, using dPDF evaluated within the QM model, the effective cross section has been calculated for this process and compared with its mean value:

 $\langle \tilde{\sigma}_{eff} \rangle = 21.04 \, {}^{+0.07}_{-0.07} \, (\delta Q_0) \, {}^{+0.06}_{-0.07} (\delta \mu_F) \, \mathrm{mb} \; .$



IN THIS CHANNEL, THANKS TO THIS ANALYSIS, THE POSSIBILITY TO OBSERVE FOR THE FIRST TIME TWO-PARTON CORRELATIONS, IN THE NEXT LHC RUN, HAS BEEN ESTABLISHED

A clue from data?

M. R. and F. A. Ceccopieri, PRD 97, no. 7, 071501 (2018) rapid communication

Considering the factorization ansatz, for which some estimates of $\sigma_{\rm eff}$ are available, then one has: σ_e

$$f_{ff} = \left[\int \frac{d\vec{k}_{\perp}}{(2\pi)^2} \tilde{T}(\vec{k}_{\perp}) \tilde{T}(-\vec{k}_{\perp}) \right]^{-1}$$
 Effective form factor (Eff)

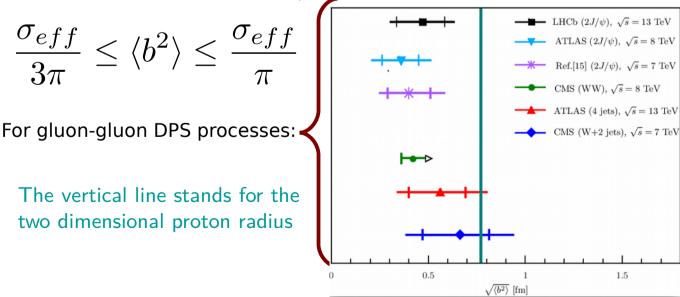
Eff can be formally defined as **FIRST MOMENT** of dPDF (like for GPDs) through the proton wave function:

$$\tilde{T}(k_{\perp}) = \frac{1}{2} \int dx_1 dx_2 F(x_1, x_2, k_{\perp}) = \int d\vec{k}_1 d\vec{k}_2 \Psi(\vec{k}_1 + \vec{k}_{\perp}, \vec{k}_2) \Psi^{\dagger}(\vec{k}_1, \vec{k}_2 + \vec{k}_{\perp})$$

From the above quantity the mean distance in the transverse plane between two partons can be defined:

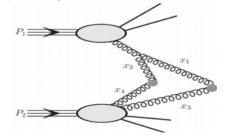
$$\langle b^2 \rangle \sim -2 \frac{d}{k_\perp dk_\perp} \tilde{T}(k_\perp) \bigg|_{k_\perp = 0}$$

Eff is completely unknown but using general model independent properties, obtained by comparing Eff with standard proton ff, we analytically found that:



We are working on:

• Extending the approach including splitting term



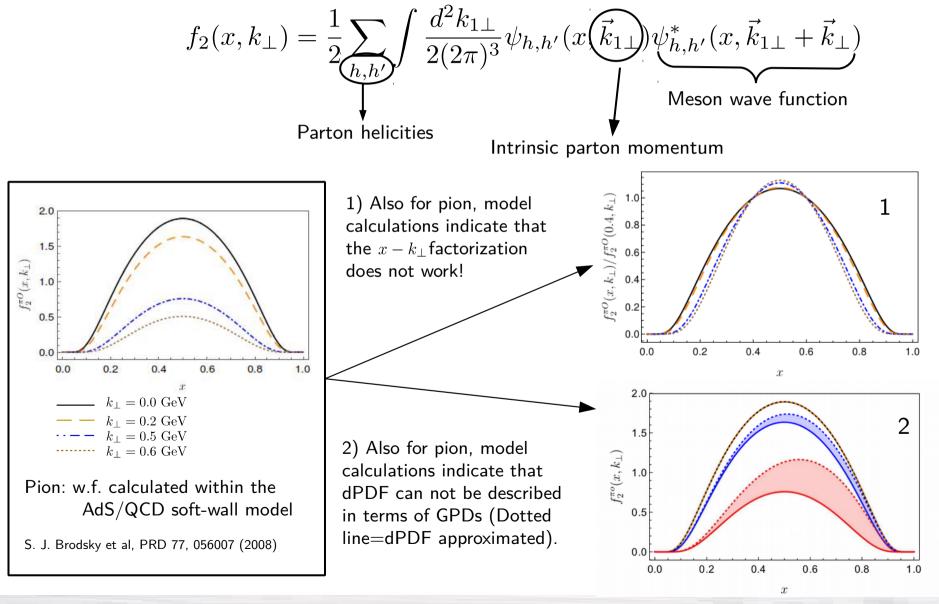
• Extending the approach to the most general unfactorized case

Clermont-Ferrand 2018

What next: pion double PDF

M. R., S. Scopetta, M. Traini and V.Vento, arXiv: 1806.10112

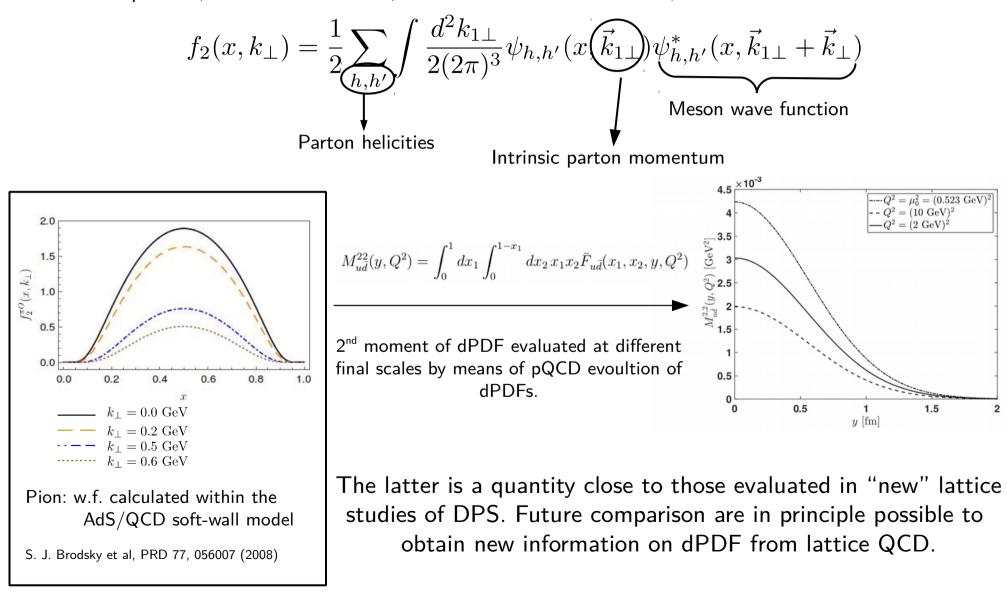
The dPDF expression, at the hadronic scale, evaluated in the intrinsic frame, in term of meson wave function:



Clermont-Ferrand 2018

What next: pion double PDF

The dPDF expression, at the hadronic scale, evaluated in the intrinsic frame, in term of meson wave function:



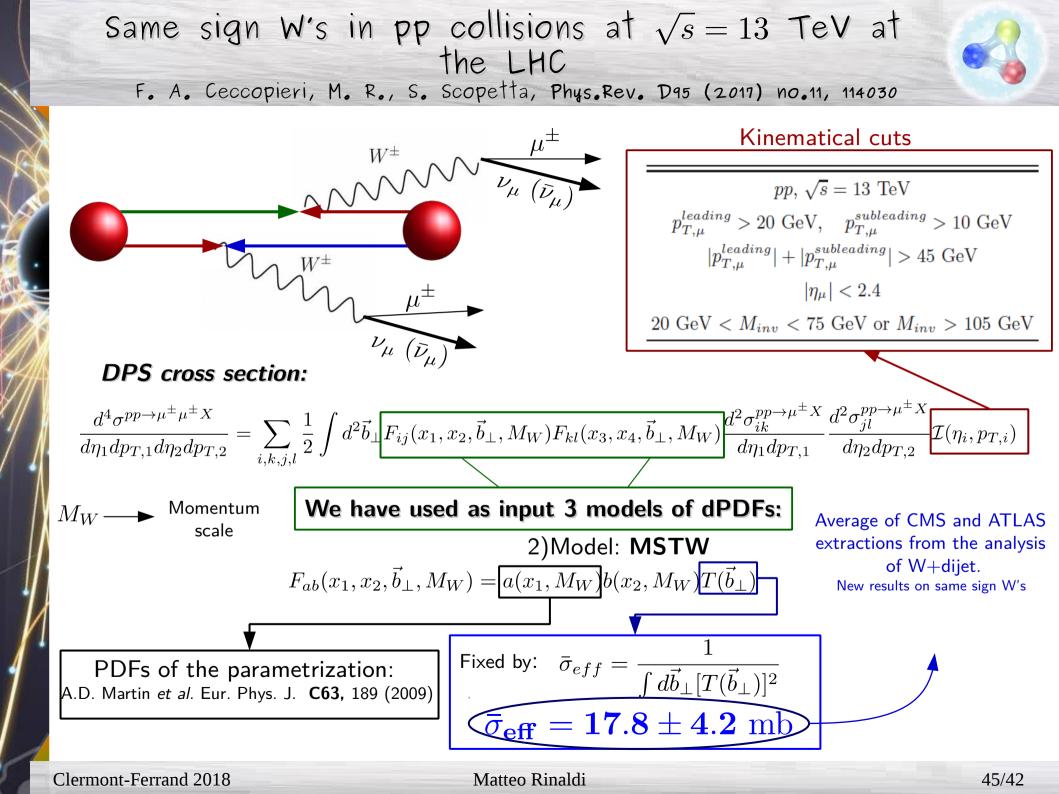
Conclusions

- A CQM calculation of the dPDFs with a Poincare' invariant approach
 - r longitudinal and transverse correlations are found;
 - deep study on relativistic effects: transverse and longitudinal model independent correlations have been found;
 - pQCD evolution of dPDFs, including non perturbative degrees of freedom into the scheme: correlations are present at high energy scales and in the low x region;
 - calculation of the effective X-section within different models in the valence region:
 x-dependent quantity obtained!
 - r calculation of mean partonic distance from present experimental amalyses
 - calculation of pion dPDF
- Study of DPS in same sign WW production at the LHC
 - Calculations of the DPS cross section of same sign WW production
 - \cdot dynamical correlations are found to be measurable in the next run at the LHC
- A proton imagining (complementary to the one investigated by means of electromagnetic probes) can/will be obtained in the next LHC runs!

MPI at work

Next MPI workshop in Perugia:

Clermont-Ferrand 2018



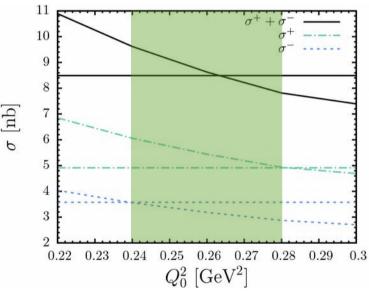
Same sign W's in pp collisions at $\sqrt{s} = 13$ TeV at the LHC

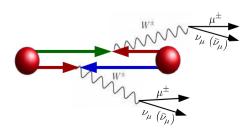
F. A. Ceccopieri, M. R., S. Scopetta, Phys. Rev. D95 (2017) no.11, 114030

Fixing the initial scale $\ Q_0^2$ of dPDFs evaluated within the QM model:

- Since in this model the initial scale is originally located in the infrared regime, pQCD evolution and related observables, calculated by means of this model, are very sensitive to value of the initial scale Q_0 .
- → In order to fix Q_0 in this analysis use has been made of results on single

parton scattering for $pp \to W^+ \to (\mu^+ \bar{\nu}_\mu) X; \ pp \to W^- \to (\mu^- \nu_\mu) X$





THE STRATEGY:

- ✓ σ⁺, σ⁻ have been evaluated through DYNNLO [1] code by using PDFs of MSTW08 parametrization [2] (straight lines)
 [1] S. Catani et. al., PRL 103, 082001 (2009); S. Catani et al., PRL 98, 222002 (2007)
 [2] A.D. Martin *et al.* Eur. Phys. J. C63, 189 (2009)
- ✓ σ^+ , σ^- have been evaluated through the PDFs calculated by means of the QM model starting from different values of Q_0

RESULT:

We found a range of values of Q_0 where the calculations within the LF approach get close to DYNNLO results

<u>We associate a theoretical error to Q_0 :</u>

 $\delta Q_0^2 \longrightarrow 0.24 < Q_0^2 < 0.28 \text{ GeV}^2$

Same sign W's in pp collisions at $\sqrt{s} = 13$ TeV at the LHC F. A. Ceccopieri, M. R., S. Scopetta, Phys.Rev. D95 (2017) no.11, 114030

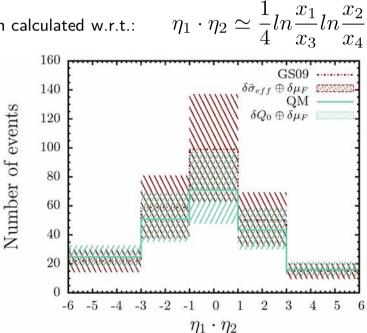
The uncertainty due to neglected higher order perturbative corrections has been simulated by varying the final momentum scale:

$$\delta \mu_F = 0.5 M_W < \mu_F < 2.0 M_W$$

✓ The total cross section has been evaluated within the three models

✓ The differential cross section, converted in numbers of events, has been calculated w.r.t.:

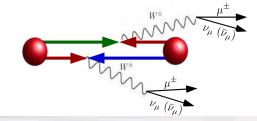
dPDFs	$\sigma^{++} + \sigma^{} \text{ [fb]}$		
MSTW	$0.77 \stackrel{+0.23}{_{-0.21}} (\delta \mu_F) \stackrel{+0.18}{_{-0.18}} (\delta \bar{\sigma}_{eff})$		
GS09	$0.82 \stackrel{+0.24}{_{-0.26}} (\delta \mu_F) \stackrel{+0.19}{_{-0.19}} (\delta \bar{\sigma}_{eff})$		
QM	$0.69 \ ^{+0.18}_{-0.18} \ (\delta \mu_F) \ ^{+0.12}_{-0.16} \ (\delta Q_0)$		
dPDFs	σ^{++} [fb	$\sigma^{}$ [fb]	$\sigma^{++}/\sigma^{}$
GS09	0.54	0.28	1.9
QM	0.53	0.16	3.4
GS09/Q	M 1.01	1.78	-



RESULTS:

results of the three models are comparable within the errors;

▶ with L = 300 fb⁻¹ the central value of the predictions of the three models can experimentally discriminated;
 ▶ for the expected number of events:



- **x** The maximum is found for $\eta_1 \cdot \eta_2 \sim 0$ where interacting partons share same momentum;
- **X** For large $\eta_1 \cdot \eta_2$ the decreasing of the cross section is related to the decreasing behaviour of the dPDFs in the high x_i region

Matteo Rinaldi

Clermont-Ferrand 2018