

Heavy-flavour correlations with charged particles and collective effects in small systems with ALICE at the LHC

Marianna MAZZILLI fot the ALICE Collaboration

University and INFN of Bari

Hard-soft correlations in hadronic collisions GDR-QCD 23-25 July 2018

Motivations

- Heavy quarks (charm and beauty) are produced in hard scattering processes taking place in the initial stages of the heavy-ion collision
 - They experience the full evolution of the Quark-Gluon Plasma, a state of matter of deconfined quarks and gluons, formed in ultra-relativistic heavy-ion collisions
- In the heavy-flavour sector, ALICE has observed:
 - Positive elliptic flow (v_2) for D mesons in semi-central collisions
 - Significant suppression of D-meson production in central Pb-Pb collisions

Angular correlations with HF signals: introduction

Angular correlations with HF signals: introduction

- Interesting regions for HF correlation studies:
 - Near side $(\Delta \varphi = 0)$ \rightarrow particles from jet containing the trigger
 - Away side $(\Delta \varphi = \pi) \rightarrow$ particles from fragmentation of the other HF jet
 - Transverse region \rightarrow Underlying event tracks (flat in $\Delta \phi$)

Angular correlations with HF signals: introduction

- □ Further insight on HF studying HF Correlations (vs $\Delta \varphi$, $\Delta \eta$)
- □ Access to complementary information w.r.t. "standard" HF observables:
 - HQ production mechanisms
 - HQ fragmentation and jets
 - Fragmentation/production modification in p-Pb, Pb-Pb
 - HQ elliptic flow in small systems via correlations with hadrons

Possible observables

ALICE

- □ Observables directly tracking $Q\overline{Q}$ azimuthal correlations ($D\overline{D}$, $B\overline{B}$, b jet-b jet, HFe-HFe , B/D HFe/ μ)
 - Huge statistics is needed
 - Challenging, will be studied after detector upgrade (LS2)

- Observables including the underlying event, also sensitive to fragmentation, intra-jet properties (D-hadron, HF (e/μ)hadron)
 - Access to $Q\overline{Q}$ angular correlations is more indirect and "washed out"
 - Less demanding in terms of statistics

pp Collisions

- Investigate heavy-flavour quark fragmentation properties and characterize heavy-flavour jets:
 - Angular opening of the jet
 - Multiplicity of particles
 - Momentum distribution inside the jet all differentially in p_T of trigger and associated particles
- Sensitivity to LO and NLO heavy-quark production processes?
- Extract relative fraction of electrons from charm and beauty decays triggering on heavy-flavour hadron decay electrons (HFe)
- Reference for p-Pb and Pb-Pb results

p-Pb Collisions

- □ Investigate possible modifications of angular correlations which could derive from initial-state effects (e.g. CGC) or possible final-state effects (e.g. hydrodynamics)
- □ Search for long-range ridge-like structures (double ridge), observed in dihadron correlations, also in the heavy-flavour sector
 - charm/beauty elliptic flow in p-Pb collisions?

ALICE PLB 719 (2013) 29

h-h correlations in p-Pb collisions (High-mult events – Low-mult events)

p-Pb Collisions

- In di-hadron correlations the pertrigger yield in $\Delta \varphi$ on the near-side and on the away side are similar for low-multiplicity p-Pb collisions and pp collisions and increase with increasing multiplicity in p-Pb collisions.
- $ightharpoonup v_2$ and $ightharpoonup v_3$ in qualitative agreement with the hydrodynamical model calculation (*arXiv:1211.0845*)

ALICE PLB 719 (2013) 29

Pb-Pb Collisions

- □ Probe the QGP effects on heavy quarks by studying how correlation distributions of heavy-flavour particles are modified w.r.t. vacuum
 - Near side → modification of parton fragmentation function in QCD medium
 - Away-side → path-length dependence of in-medium energy loss
- Disentangle radiative and collisional parton energy loss in QGP medium

Phys. Rev. C 90 (2014) 024907

ALICE central barrel detector

ALICE central barrel detector

ITS: vertexing and

|η| < 0

trackin DATA SAMPLES:

- pp collisions at \sqrt{s} = 7 TeV, $L_{\text{int}} \approx 5 \text{ nb}^{-1}$ (2010), MB events
- pp collisions at \sqrt{s} = 13 TeV, $L_{\text{int}} \approx 8 \text{ nb}^{-1}$ (2016), MB events
- p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, $L_{int} \approx 300 \ \mu b^{-1}$ (2016), MB events

TPC: tracking and PID |n| < 0.9

TOF: PID $|\eta| < 0.9$

V0 and ZDC: trigger and multiplicity/centrality determination

D-h angular correlations

D-h analysis strategy

- ALICE can identify D mesons using fully reconstructed hadronic decays
- D-meson signal extracted from invariant mass distributions

$$D^{0} \rightarrow K^{-}\pi^{+}$$
 (B.R. 3,93%)
 $D^{*+} \rightarrow D^{0}\pi^{+}$ (D⁰ $\rightarrow K^{-}\pi^{+}$) (B.R. 67,7%*3,93%)
 $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$ (B.R. 9,46%)

- D-meson candidates selected by exploiting:
 - Topology of the decay, displacement of secondary vertex
 - Particle identification (π , K) using TPC and TOF response
- Selected D mesons (including background) → «trigger» particles for building the angular correlation distribution in 2d ($\Delta \varphi$, $\Delta \eta$)
- «Associated» particles correlated with D mesons selected via track-quality cuts for p_T > 0.3 GeV/c, $|\eta| < 0.8$

D-h analysis strategy

 Sideband subtraction → Removal of correlation contribution from background D-meson candidates

 Event Mixing → Correction for limited detector acceptance and detector spatial inhomogeneities

Efficiency correction for D-meson and associated

track reconstruction

----- Feed-down

Acceptance \times Efficiency $\overset{\circ}{\circ}_{\stackrel{\circ}{\vdash}}$

 10^{-2}

 10^{-3}

 p_{\perp} (GeV/c)

D-h analysis strategy

- B→D feed-down contribution → subtracted exploiting templates of angular correlation distribution of B→D mesons (FONLL)
- Purity estimation → Removal of secondary tracks residual contamination
- Weighted average of D-meson species correlation distributions
- Fit to correlation distributions to extract quantitative observables (near- and away-side peak yields and widths, baseline height)

$$f(\Delta\phi) = c + \frac{Y_{NS}}{\sqrt{2\pi}\sigma_{NS}}e^{\frac{(\Delta\phi - \mu_{NS})^2}{2\sigma_{NS}^2}} + \frac{Y_{AS}}{\sqrt{2\pi}\sigma_{AS}}e^{\frac{(\Delta\phi - \mu_{AS})^2}{2\sigma_{AS}^2}}$$

- Comparison with models after baseline subtraction on the average distributions of D⁰ and D* mesons
- Models describe qualitatively data: charm fragmentation in jets fairly described
- Away-side data could set contraints on models and contribution of different HF production processes
- Good observable for investigating possible medium modification to charm jets

- POWHEG+PYTHIA tends to generally predict larger associated yields and broader peaks than PYTHIA
- Data yields seem to be described better with POWHEG predictions
- Precision still not enough to have firm conclusions about the **peak widths**
- Apart for Perugia-0 tune all the models catch well the baseline values and trend with current uncertainties

D-h correlations: pp and p-Pb

Superimposed correlation distributions in **pp at** \sqrt{s} =7, 13TeV and centrality integrated **p-Pb collisions at** \sqrt{s} NN= 5.02 TeV

- Similar
 behaviour of
 the correlation
 distributions
 between the
 three energies
 and collision
 systems
- No evidence of CNM effects in p-Pb collisions

D-h correlations: pp and p-Pb

Comparison of the near-side yields and widths in **pp at** \sqrt{s} =7, **13TeV** and centrality integrated **p-Pb collisions at** \sqrt{s} NN = 5.02 TeV

- Compatible
 near-side peak
 properties
 between the
 three energies
 and collision
 systems
- No evidence of modification due to initial-state or final-state effects in p-Pb collisions, within uncertainties

- Results in different D meson (trigger) and hadron (associate) p_T ranges
- New p-Pb data sample offers better precision when compared to Run 1 sample
- **Higher** $p_T(D)$ and p_T (assoc) ranges accessible
- First quantitative access to away side

• Correlation distributions and their p_T trend qualitatively described by

New p_T(ass)
ranges are
accessible thanks
to higher p-Pb
statistics

Closer to
(angular)
kinematics of
hard-scattering ->
enhance
sensitivity to
charm production
processes?

Important tool to investigate charm-jet internal structure and kinematics!

D meson p_{\pm} (GeV/c)

D meson p_{τ}

Hard-soft correlations in

D meson $p_{_{T}}$ (GeV/c)

Compatible AS yields (though ALICE on the lower side of PYTHIA simulations) and width

POWHEG gives lower AS yields than PYTHIA6,8 (the opposite to NS yields) → Hint that POWHEG is closer to data

Main uncertainty from assumptions used for baseline subtraction —> can be reduced with larger stat. samples

23/07/18

D meson p_{-} (GeV/c)

D-h correlations: p-Pb 2016 vs. centrality

Hard-soft correlations in hadronic collisions GDR-QCD-M. Mazzilli

ALI-PREL 23/07/18

 Do jet properties depend on multiplicity? Are they modified at high multiplicity in p-Pb? Collectivity behaviour (HF v₂)?

Measurement performed in 3 centrality classes (0-20%, 20-60%, 60-100%)

D-h correlations: p-Pb 2016 vs. centrality

- No modification of near-side peak properties among different centralities, within the uncertainties
- Not enough sensitivity to extract the Dmeson v₂ (observed in HF-electrons and charged-particle correlations)

HFe-h angular correlations

HFe-h analysis strategy

Heavy-flavour hadron (B and D) semileptonic decay channels (B.R. ~10%)

Main differences w.r.t. D-hadron case:

- 1. Electron identification
 - Quality cuts on the track reconstruction
 - Particle identification based on TPC and TOF response + EMCAL (at high $p_T(e)$)

HFe-h analysis strategy

Main differences w.r.t. D-hadron case:

- 2. Removal of:
- residual h-h correlation (statistical subtraction)
- □ non-HFe contribution:
 - Sources of non-HFe: conversions ($\gamma \rightarrow e^+e^-$), Dalitz decays (π^0 , $\eta \rightarrow \gamma e^+e^-$)
 - Non-HFe correlations built using ULS pairs of M_{ee} distributions (with upper M_{ee} cut), and considering correlations from LS pairs to remove combinatorial background

p-Pb results as a function of multiplicity

ALICE

Looking for possible modulations (v_2 like) in the heavy-flavour sector in p-Pb collisions (not enough statistics to observe 2d long-range ridges).

 $0.3 < p_T(ass) < 2 \text{ GeV/c}$

23/07/18

30

heavy quarks?

Baseline stat. unc. 0-20%

Baseline stat. unc. 60-100%

3% syst. Δφ-uncorrelated unc

1% syst. unc. in $|\Delta \varphi| < 1$

 $\Delta \phi$ (rad)

$v_{2\Delta}^{Hfe-ch}$ estimation

 Low multiplicity correlation functions are subtracted from the high multiplicity ones to remove the jet component.

• $v_{2\Delta}$ quantified fitting the distribution via Fourier series:

$$C_{HM}(\Delta \varphi) - C_{LM}^{sub} = a_0(1 + 2V_{1\Delta}\cos(\Delta \varphi) + 2V_{2\Delta}\cos(2\Delta \varphi)).$$

The resulting distribution requires a non-zero coefficient of the secondorder modulation in the Fourier decomposition

HFe estimation

- $V_2^{HFe} = V_2 \wedge^{Hfe-ch} / V_2^{ch}$
- First measurement of heavyflavour electron v_2^{HFe} {2PC, sub} in p-Pb collisions
- Results show positive а v₂^{HFe}(2PC,sub) for electrons with $1.5 < p_T < 4 \text{ GeV/c}$
- v₂ qualitatively similar for heavyand light- flavour hadron in the common p_T interval
- Comparison with muon-v₂ not straightforward due to different $_{\text{ALI-PUB-160119}}$ CNM effects on HF production at different rapidities. Moreover, it includes also non-HF muons and it is subject to a larger η -gap.

3

arXiv:1805.04367 [nucl-ex]

 p_{τ} (GeV/c)

Conclusions

- Azimuthal correlation studies are complementary to jet studies
 - Allow to characterize the "rest" of the jet produced by the charm fragmentation
 - Can provide relevant information on the properties of charm production, fragmentation and hadronization

Conclusions

- Azimuthal correlation studies are complementary to jet studies
 - Allow to characterize the "rest" of the jet produced by the charm fragmentation
 - Can provide relevant information on the properties of charm production, fragmentation and hadronization

D-hadron correlations:

- Compatible near-side yields and widths in **pp at** \sqrt{s} =7, 13 TeV and in **p-Pb at** \sqrt{s} NN = 5.02 TeV
 - No evidence of CNM effects with current uncertainty level
- Good agreement of near-side observables with MC predictions in pp collisions
- Near-side and away-side yields are qualitatively described by PYTHIA and POWHEG+PYTHIA expectation in p-Pb collisions
- No modification of the near-side peak properties among different centralities, within the uncertainties in p-Pb collisions

Conclusions

- Azimuthal correlation studies are complementary to jet studies
 - Allow to characterize the "rest" of the jet produced by the charm fragmentation
 - Can provide relevant information on the properties of charm production, fragmentation and hadronization

D-hadron correlations:

- Compatible near-side yields and widths in **pp at** \sqrt{s} =7, 13 TeV and in **p-Pb at** \sqrt{s} NN = 5.02 TeV
 - No evidence of CNM effects with current uncertainty level
- Good agreement of near-side observables with MC predictions in pp collisions
- Near-side and away-side yields are qualitatively described by PYTHIA and POWHEG+PYTHIA expectation in p-Pb collisions
- No modification of the near-side peak properties among different centralities, within the uncertainties in p-Pb collisions

HFe-hadron correlations:

- Evidence of v_2^{HFe} in high-multiplicity p-Pb collisions
- Compatible v_2 strength for heavy- and light- flavour hadron in the common p_T interval Hard-soft correlations in hadronic collisions GDR-QCD-M. Mazzilli

- Analysis ongoing on pp@5TeV (2017) sample ($L_{int} \approx 19 \text{ nb}^{-1}$ for MB events)
 - Precise reference for the upcoming Pb-Pb studies
 - Extended p_T range and more p_T -differential analyses to probe energy dependence of charm-jets in-vacuum fragmentation (\sqrt{s} =5, 7, 13 TeV)

- Analysis ongoing on pp@5TeV (2017) sample ($L_{int} \approx 19 \text{ nb}^{-1}$ for MB events)
 - Precise reference for the upcoming Pb-Pb studies
 - Extended p_T range and more p_T -differential analyses to probe energy dependence of charm-jets in-vacuum fragmentation (\sqrt{s} =5, 7, 13 TeV)
- Analysis on Pb-Pb 2018 sample
 - Check modification of jet-peak shape and spatial redistribution of the energy lost by the parton
 - More precise and differential measurements

- Analysis ongoing on pp@5TeV (2017) sample ($L_{int} \approx 19 \text{ nb}^{-1}$ for MB events)
 - Precise reference for the upcoming Pb-Pb studies
 - Extended p_T range and more p_T -differential analyses to probe energy dependence of charm-jets in-vacuum fragmentation (\sqrt{s} =5, 7, 13 TeV)
- Analysis on Pb-Pb 2018 sample
 - Check modification of jet-peak shape and spatial redistribution of the energy lost by the parton
 - More precise and differential measurements

UPGRADE

- Increased precision on all observables already being measured
- D-h analysis on Pb-Pb also feasible, in addition to e-h
- Large-stat sample should also allow to look at the more 'direct' observables (D-e, e-e, HFjet-HFjet)

UPGRADE

- Increased precision on all observables already being measured
- D-h analysis on Pb-Pb also feasible, in addition to e-h
- Large-stat sample should also allow to look at the more 'direct' observables (D-e, e-e, HFjet-HFjet)

Looking forward for theoretical predictions on these observables!!

23/07/18