Hard-Soft correlations in hadronic collisions

Steffen Weber

Charmonium production versus multiplicity in PYTHIA8

Motivation

Preliminary ALICE results

- pp @ 13 TeV
- Inclusive J/ψ at |y| < 0.9
- multiplicity at $|\eta| < 1.0$

Stronger than linear increase observed

Models describe data well:

- Ferreiro: Overlapping strings → saturation of soft particle production, hard probes unaffected
- Kopeliovich: Use analogy between high multiplicity pp an pA collisions
- EPOS3: Hydrodynamic expansion reduced particle multiplicity
- PYTHIA

Increase gets stronger at higher p₊

reproduced by PYTHIA

Preliminary ALICE results

- pp @ 13 TeV
- Inclusive J/ψ at |y| < 0.9
- multiplicity at $|\eta| < 1.0$

Investigate effects of

- MultiParton Interactions (MPI)
- Colour Reconnection (CR)
- Auto-correlation

Technicalities:

- PYTHIA8.230
- J/ψ forced to decay in dielectron channel
- non-diffractive events
- No N_{ch}>0 normalization as in data

- QCD inspired MC event generator
- Hard partonic interactions plus parton showers
- Soft particle production in string fragmentation
- Crucial: MultiParton Interactions: MPI
 - proton-proton collisions consist of several hard interactions (with associated parton showers)
 - → possibility to produce several hard probes in one collision

J/ψ production in hadronic collisions

J/ψ production in PYTHIA

 $b \rightarrow B \rightarrow J/\psi + X$

FONLL + B.R.

b from hard interaction or gluon splitting

Prompt J/ψ

$$gg \rightarrow Q\overline{Q}(CS, CO) \rightarrow J/\psi$$

NRQCD

$$gg \rightarrow Q\overline{Q}(CS, CO) \rightarrow \chi_c \rightarrow J/\psi$$

$$gg \rightarrow Q\overline{Q}(CS, CO) \rightarrow \psi' \rightarrow J/\psi$$

LO NRQCD processes implemented

Additional mechanism:

J/ψ produced at hadronization (about 10%)

Hadronization in PYTHIA

String fragmentation:

no heavy quarks produced in pair creation!

Special cases for short strings:

- Clusters decay: only one pair creations → two mesons produced
- Cluster collapse: no pair creation → initial quarks bound to hadron
 - \rightarrow if c and $\overline{c} \rightarrow$ charmonium produced

J/ψ vs number of MPI

Total J/ ψ yield in 4π scales linearly with N_{MPI}

J/ψ vs multiplicity

J/ψ at mid-rapidity vs. multiplicity at mid-rapidity: stronger-than-liner increase of non-prompt J/ψ \rightarrow auto-correlation (will be investigated later)

Colour Reconnection

Rearrangement of string topology in order to reduce total string length

Two effects:

- partons from different MPIs get connected
- Total string length reduced → total multiplicity reduced

Colour reconnection

- Normal J/ψ production: hard process, independent of strings
 → not affected by CR
- J/ ψ from cluster collapse: with CR also c and \overline{c} from different MPI can combine \rightarrow quadratic increase with N_{MPI}
 - Overall fraction of total yield rises from ~2% to ~10%

Colour reconnection

CR reduces charged particle multiplicity \rightarrow slightly stronger than linear increase of non-prompt J/ ψ gets enhanced

Transverse momentum bins

- Strong p_τ dependence for non-prompt J/ψ
- Some $p_{\scriptscriptstyle T}$ dependence for J/ ψ from NRQCD
- No $p_{\scriptscriptstyle T}$ dependence for J/ ψ from cluster collapse

Auto-Correlation

- Jet bias and additional decay products (non-prompt J/ψ)
- Investigate multiplicity in three φ regions
- Investigate multiplicity at mid and forward rapidity

 Should be best visible for simulation without MPI

Situation without MPI

Without MPI:

- Prompt J/ψ production largely independent of multiplicity
- Non-prompt J/ ψ : multiplicity dependence stronger than in full simulation

Auto-correlation: sources

Auto-correlation: sources

Auto-correlation: non-prompt, $p_{\scriptscriptstyle T}$ bins

Auto-correlation

- Strong multiplicity dependence of non-prompt J/ψ without MPI largely due to correlation with multiplicity in φ region around the flight direction of the J/ψ or opposite to it
- η gap between J/ψ and multiplicity removes strong correlation with towards-region multiplicity, but not with away-region multiplicity
- Effect strongly p_T dependent
 - → bias due to jet fragmentation, decay daughters

b quark production process

- Hard processes: flavour creation, flavour excitation, ...: 65%
- Gluon (from hard process or ISR/ FSR) splitting into $b\overline{b}$: 35%
- beam remnant: negligible at mid-rapidity

Auto-correlation: $J/\psi \leftarrow B$

Auto-correlation: prompt, p_T bins

Auto-correlation

- Signature even clearer when only considering non-prompt J/ψb where b quark was produced in hard interaction
 - → yield almost independent of multiplicity in transverse region of in towards region at different rapidity

• Auto-correlation effect also seen for prompt J/ ψ , but starting at higher $p_{\scriptscriptstyle T}$

Consequences for full simulation: η gap

- Increase of inclusive J/ ψ still stronger than linear when measured as a function of forward multiplicity
- Increase is p_T dependent

Consequences for full simulation: φ gap

- (Slightly weaker than) linear increase of inclusive J/ψ when measured as a function of multiplicity in transverse region
- Increase independent of p_T

Consequences for full simulation: φ gap

 Non-prompt J/ψ production most effected by restriction to transverse region

- Linear increase of J/ψ production with number of MPI
- In Addition:
 - Quadratic increase of cluster collapse component
 - Charged particle reduction via colour reconnection
 - Auto-correlation effects in non-prompt component
- Propose multiplicity measurement in transverse region:
 - Remove auto-correlation
 - Linear increase with multiplicity without p_⊤ dependence expected
 - Especially interesting for open heavy flavour measurements

