

Development of novel tracking concepts at NSCL

Marco Cortesi

National Superconducting Cyclotron Laboratory, Michigan State University East Lansing, Michigan 48824, U.S.A

Outlines:

- -) New MPGD structures for tracking applications
- -) The Optical-PPAC
- -) Summary and Conclusions

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 1

AT-TPC @ **NSCL**

Operational mechanism of gaseous tracking devices: collection of ionization formed along the charged particle tracks & amplifying that ionization to create a detectable signal.

Rate Capability Limits due to space charge overcome by increasing the amplifying cell granularity

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 2

Micro-Pattern Gas Detectors

Université de Bordeaux, October 2018

"Pure" elemental gas for low-energy nuclear physics applications

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 4

Multi-layer THGEM (M-THGEM)

Manufactured by multi-layer PCB techniques out of FR4/G-10/ceramic substrate

S NSCL

National Science Foundation Michigan State University $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Marco Cortesi, June 2018, Slide 5

Three-Layer M-THGEM vs Single-layer THGEM

National Science Foundation Michigan State University MICHIGAN STATE

Marco Cortesi, June 2018, Slide 6

Multi-layer THGEM (M-THGEM): performance

Cortesi et al. RSI 88, 013303 (2017)

National Science Foundation Michigan State University MICHIGAN STATE UNIVERSITY

M-THGEM: photo-feedback suppression

e- collection eff. (%)

1.0

0.8

0.6

0.4

0.2

0.0

"Collection" operation mode: -) The first THGEM acts as a "collector" - no multiplication -) Avalanche multiplication occurs in the lower THGEM elements

Cortesi et al. RSI 88, 013303 (2017)

Maxwell-Garfield Simulations

- 100% - 90%

80%

— 70%

31

He/CO₂(10%)

200Torr

25

13

MICHIGAN STATE

R

IVE

7

UN

19

No significant loss of

hole/drift field ratio

Marco Cortesi, June 2018, Slide 8

GET Workshop

Université de Bordeaux, October 2018

National Science Foundation Michigan State University

M-THGEM: Applications at NSCL (1)

-) M-THGEM as pre-amplification in pure elemental gas

AT-TPC readout -) Gas gain variation by biasing the Micromegas pads -) Larger versatility Hybrid MM + M-THGEM gas amplifier -) Good ion-back flow reduction Top Layer Cortesi et al., Rev. Sci. Ins. 88, 013303 (201 2nd Layer FR4 (0.6 mm) 3nd Layer, Bottom Laver MM 100 MΩ VNEG HV2801 He/(10%)CO Pure He 10⁵ 220 pF 10⁵ USB 300 torr 450 torr 600 torr 200 torr 100 torr 10⁴ 150 torr 400 torr 10⁴ 760 torr 600 tor .¹⁰³ 50 torr - 4000 - 4000 - 3000 - 2000 - 1000 Gain 103 10² 10¹ 10¹ 241-Am 241-Am 10° 10⁰ ON OFF ż 1.0 0 0.1 0.4 0.7 1.3 -20 Reduced Bias (Volt/torr) Reduced Bias (Volt/torr)

National Science Foundation Michigan State University $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Marco Cortesi, June 2018, Slide 9

M-THGEM: Applications at NSCL (2)

Tracking for the S800 Focal Plane Detectors System

S NSCL

National Science Foundation Michigan State University

MICHIGAN STATE

Features of new DC readout:

- -) Simple (construction) and robust
- -) Good ion-backflow suppression
- -) High detector gain at low pressure (MM+THGEM)
- -) Counting rate capability (~ a few tens kHz)
- -) Moderate dynamic range
- -) Pulse-Mode Gating
- -) High granularity (all pad are readout individually)
 - ➔ Good (sub-mm) position resolution

 Position-sensitive Micromegas readout
 + 2L M-THGEM-based pre-amplification stage + GET front-end electronics

Marco Cortesi, June 2018, Slide 10

Multi-Mesh THGEM-type multiplier (MM-THGEM)

National Science Foundation Michigan State University

MM-THGEM: effective gain

R. de Olivera & M. Cortesi 2018 JINST 13 P06019

-) High effective (single photo-electron) gain (> 10⁵) with single element
-) Higher gain when the amplification is confined inside the meshes (α=1)
-) High stability and high max achievable gain at low operational voltage

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 12

MM-THGEM: reduction of Ion BackFlow (IBF)

WELL-THGEM

Extra gain

R. de Olivera & M. Cortesi 2018 JINST 13 P06019

Double-THGEM

MM-THGEM/WELL-THGEM: IBF

R. de Olivera & M. Cortesi 2018 JINST 13 P06019

Optical Parallel-Plate Avalanche Counter

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 15

Conventional Parallel-Plate Avalanche Counter (PPAC)

National Science Foundation Michigan State University

MICHIGAN STATE

Marco Cortesi, June 2018, Slide 16

Let there be "scintillation" light

Imaging with Conventional double PPAC

- -) Time resolution → ~200 psec
- -) Position resolution \rightarrow ~1-2 mm
- -) Counting rate capability Charge division Meth. → few tens kHz Delay-line Meth. → few hundreds kHz
- -) Moderate gas gain \rightarrow heavy charged particle
- -) Simple and low cost
- -) low-mass detector but not uniform

<u>Idea</u>: localization based on recording electroluminescence light instead of charge

Advantages:

- -) New semiconductor technologies (APD, SiPM ...)
- -) High SNR
- -) No limits on photon-production (Charge -> Raether limit)
- -) Compact and high granularity
- -) Versatile- large area
- -) Better energy resolution

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 17

Optical Parallel-Plate Avalanche Counter (O-PPAC)

Motivation:

- Uniform. low-mass detector
- High spatial resolution, good time resolution
- High counting rate

Concept:

- Volume filled with scintillating gas
 - \rightarrow (CF₄, TEA/TMAE mixture, etc.)
- Ionizing particle that crosses the PPAC, trigger avalanche/streamer process
- Secondary scintillation photons are generated
- 2D position of the particle is sensed by arrays of photo-sensors

detected light Y-coordinate

Properties

- -) Easy construction/ maintenance
- -) Uniform, low-mass detector
- -) High spatial resolution (limited by the SiPM granularity)
- -) Fast signal (sub-n rise time) \rightarrow Good time resolution
- -) SiPM: single-pe sensitivity -> high sensitivity
- -) Good SNR \rightarrow high detection efficiency
- -) High Counting rate (limited by PPAC operation)
- -) Geiger mode \rightarrow infinity dynamic range

20-40 individual photo-sensors per array

Marco Cortesi, June 2018, Slide 18

GET Workshop Université de Bordeaux, October 2018

National Science Foundation Michigan State University

O-PPAC: Simulations

O-PPAC Feasibility Study: experimental setup

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 20

Charge-Light Correlation

National Science Foundation Michigan State University $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Marco Cortesi, June 2018, Slide 21

O-PPAC: Time resolution

Time resolution = 600 ps (pressure range 5-50 torr) for 3.2 mm gap, limited by low statistics (small solid angle) → lower limit imposed by the decay-time of scintillation process: 2 ns (UV) & 15 ns (visible) in CF₄

Goal for the future experiments $\rightarrow \sigma < 100 \text{ ps}$

- Time resolution measurements with 10 SiPM (VUV-sensitive MPPC) > higher statistics
- Measurement with heavy charge particle (252-Cl Fission source) → higher scintillation yield

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 22

New O-PPAC prototypes

Timing

8 DUV-MPPC in parallel Test beam with heavy ions beams

Goal → < 100 ps

PPAC + 8 MPPC sensor

Support upper PPAC electrode

Upper PPAC electrode (Copper/Aluminum)
Upper support for the MPPC

MPPC (8 sensor)

Lower support for the MPPC

Upper PPAC electrode (Copper/Aluminum)

Support lower PPAC electrode

Hamamatsu VUV3-MPPC

- -) Ceramic package, 50 um pixel pitch
- -) Ouartz window
- -) Crosstalk, afterpulse suppression

Tracking M. Cortesi et al. 2018 *JINST* 13 P10006

Position sensitive array of 10 DUV-MPPCs

Marco Cortesi, June 2018, Slide 23

GET Workshop Université de Bordeaux, October 2018

National Science Foundation Michigan State University

MICHIGAN STATE

Test of the 1D OPPAC

Test beam with 5.5 MeV alpha-particle

Test beam with ^{10,12}C in RCNP (Japan)

Université de Bordeaux, October 2018

X-coordinate (mm)

2D OPPAC prototype

Goal: new concept for application as heavy-ion tracking
capable of good position resolution (< 1 mm), high rate
capability (1 MHz) good homogeneity & high dynamic rangeCollimator frame:
-) 3D printing production
-) OPPAC effective area = 10x10 cm²

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 25

Summary

New MPGD architectures:

<u>Goals</u>: operation of TPC in pure element gas operation (AT mode) and higher counting rate capability

- 1) Multi-layer THick Gas Electron Multiplier (M-THGEM)
 - -) confinement of the avalanche in a small volume within the holes
 - → lesser photo-mediated secondary effect
 - -) most stable high gain in pure elemental gases
 - -) lower operation voltage applied between different electrode
 - → lower probability to damages

2) Multi-Mesh THGEM-type multiplier (MM-THGEM)

- -) multi-mesh avalanche structure over large area
- -) uniform electric field in the avalanche gap
 - → better energy resolution (?)
- -) significant reduction of the IBF (lower IBF compared to other hole-type multiplier)

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 26

O-PPAC: Expected Performance

-) Uniform, low-mass detector (transmission detector for heavy ions) -> low angular/energy straggling

- -) Imaging/tracking of charged particles
- -) Good time resolution (as low as few hundred pico-second)
- -) Good energy resolution
 High scintillation yield and light readout decouple form charge/light avalanche process → high SNR
- -) Position resolution (<1 mm based on light CG) could be improved by dedicated algorithm that includes other factors (light dispersion, etc.)
- -) Wide dynamic range in Geiger-mode operation (in proportional avalanche mode, pressure of the filling gas can be adjusted depending on application)

O-PPAC: Potential Applications

- ✓ Applications of conventional PPAC:
 - -) Detection of fast-particle (i.e. time-of-flight measurement)
 - -) Transmission Imaging/tracking of heavy ions
 - (i.e. as focal plane detector in magnetic spectrometer or in mass separator)

Medical Applications:

Beam diagnostic (hadron-therapy applications as position/profile online beam monitor, online treatment plan optimization and fast-interlock, proton range radiography for dosimetry study)

Heavy-ions radiography/tomography

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 27