

Development of novel tracking concepts at NSCL

Marco Cortesi

National Superconducting Cyclotron Laboratory, Michigan State University East Lansing, Michigan 48824, U.S.A

Outlines:

- **-) New MPGD structures for tracking applications**
- **-) The Optical-PPAC**
- **-) Summary and Conclusions**

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 1

AT-TPC @ NSCL

Operational mechanism of gaseous tracking devices: collection of ionization formed along the charged particle tracks & amplifying that ionization to create a detectable signal.

Rate Capability Limits due to space charge overcome by increasing the amplifying cell granularity

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 2

Micro-Pattern Gas Detectors

Université de Bordeaux, October 2018

"Pure" elemental gas for low-energy nuclear physics applications

Active-Target Gases for Studying Inverse Kinematic Reactions

H² (alternatively iC4H10) as proton target

1 neutron pickup (p,d) 2 neutron pickup (p,t) p-scattering

D² as deuteron target

1 neutron transfer (d,p) 1 proton pickup $(d,3He)$ Inelastic scattering (d,d')

\geq ³He

1 proton transfer (3He,d)

⁴He as alpha target

Inelastic scattering (4He, ⁴He'), Isoscalar Giant Resonances excitations … Alpha-induced reactions for astrophysical p-process

-) Purity (no quencher) \rightarrow **High Reaction Yield -) Low-Pressure Operation** \rightarrow **Large Dynamic Range**

Endcap Detector Performance: Gas Gain, Energy Resolution, Spatial Resolution, Counting Rate Capability, Stability etc…

Miyamoto et al. 2010 JINST 5 P05008

Marco Cortesi, June 2018, Slide 4

GET Workshop Université de Bordeaux, October 2018

National Science Foundation Michigan State University

Multi-layer THGEM (M-THGEM)

Manufactured by multi-layer PCB techniques out of FR4/G-10/ceramic substrate

National Science Foundation Michigan State University

MICHIGAN STATE

Marco Cortesi, June 2018, Slide 5

Three-Layer M-THGEM vs Single-layer THGEM

National Science Foundation Michigan State University

MICHIGAN STATE $\overline{U N IV E}$ $R S I T Y$

Marco Cortesi, June 2018, Slide 6

Multi-layer THGEM (M-THGEM): performance

Cortesi et al. *RSI* **88**, 013303 (2017)

National Science Foundation Michigan State University

MICHIGAN STATE \overline{U} N \overline{V} **RSITY**

GET Workshop

Université de Bordeaux, October 2018

M-THGEM: photo-feedback suppression

"Collection" operation mode: -) The frst THGEM acts as a "collector" – no multiplication -) Avalanche multiplication occurs in the lower THGEM elements

Cortesi et al. *RSI* **88**, 013303 (2017)

Maxwell-Garfeld Simulations

GET Workshop Université de Bordeaux, October 2018

National Science Foundation Michigan State University

MICHIGAN STATE

UNIVERSI

M-THGEM: Applications at NSCL (1)

Michigan State University

 \mathbf{I} V $\mathbf R$ $S₁$ **GET Workshop**

Université de Bordeaux, October 2018

M-THGEM: Applications at NSCL (2)

Tracking for the S800 Focal Plane Detectors System

National Science Foundation Michigan State University

MICHIGAN STATE

Features of new DC readout:

- -) Simple (construction) and robust
- -) Good ion-backfow suppression
- -) High detector gain at low pressure (MM+THGEM)
- -) Counting rate capability (\sim a few tens kHz)
- -) Moderate dynamic range
- -) Pulse-Mode Gating
- -) High granularity (all pad are readout individually) → Good (sub-mm) position resolution

Position-sensitive Micromegas readout + 2L M-THGEM-based pre-amplifcation

Marco Cortesi, June 2018, Slide 10

Multi-Mesh THGEM-type multiplier (MM-THGEM)

National Science Foundation Michigan State University

MICHIGAN STATE

Marco Cortesi, June 2018, Slide 11

MM-THGEM: effective gain

R. de Olivera & M. Cortesi 2018 JINST 13 P06019

-) High effective (single photo-electron) gain (> 10⁵) with single element -) Higher gain when the amplification is confined inside the meshes (α=1) -) High stability and high max achievable gain at low operational voltage

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 12

MM-THGEM: reduction of Ion BackFlow (IBF)

WELL-THGEM → Extra gain

R. de Olivera & M. Cortesi 2018 JINST 13 P06019

Double-THGEM

MM-THGEM/WELL-THGEM: IBF

R. de Olivera & M. Cortesi 2018 JINST 13 P06019

Optical Parallel-Plate Avalanche Counter

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 15

Conventional Parallel-Plate Avalanche Counter (PPAC)

National Science Foundation Michigan State University

MICHIGAN STATE

Marco Cortesi, June 2018, Slide 16

Let there be "scintillation" light

Imaging with Conventional double PPAC

- -) Time resolution \rightarrow ~200 psec
- -) Position resolution \rightarrow ~1-2 mm
- -) Counting rate capability Charge division Meth. \rightarrow few tens kHz Delay-line Meth. \rightarrow few hundreds kHz
- $-$) Moderate gas gain \rightarrow heavy charged particle
- -) Simple and low cost
- -) low-mass detector but not uniform

Idea: localization based on recording electroluminescence light instead of charge

Advantages:

- -) New semiconductor technologies (APD, SiPM …)
- -) High SNR
- $-$) No limits on photon-production (Charge \rightarrow Raether limit)
- -) Compact and high granularity
- -) Versatile- large area
- -) Better energy resolution

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 17

Optical Parallel-Plate Avalanche Counter (O-PPAC)

 $\overline{U N I V E R}$

Motivation:

• Uniform, low-mass detector

National Science Foundation

Michigan State University

- High spatial resolution, good time resolution
- High counting rate

Concept:

- Volume flled with scintillating gas
- \rightarrow (CF₄, TEA/TMAE mixture, etc.)
- Ionizing particle that crosses the PPAC, trigger avalanche/streamer process
- Secondary scintillation photons are generated
- 2D position of the particle is sensed by arrays of photo-sensors

detected light Y-coordinate

Properties

- -) Easy construction/ maintenance
- -) Uniform, low-mass detector
- -) High spatial resolution (limited by the SiPM granularity)
- -) Fast signal (sub-n rise time) \rightarrow Good time resolution
- -) SiPM: single-pe sensitivity -> high sensitivity
- $-$) Good SNR \rightarrow high detection efficiency
- -) High Counting rate (limited by PPAC operation)
- -) Geiger mode \rightarrow infinity dynamic range

20-40 individual photo-sensors per array

Marco Cortesi, June 2018, Slide 18

O-PPAC: Simulations

National Science Foundation Michigan State University

MICHIGAN STATE UNIVERSITY

O-PPAC Feasibility Study: experimental setup

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 20

Charge-Light Correlation

National Science Foundation Michigan State University

MICHIGAN STATE UNIVERSITY

Marco Cortesi, June 2018, Slide 21

O-PPAC: Time resolution

Time resolution = 600 ps (pressure range 5-50 torr) for 3.2 mm gap, limited by low statistics (small solid angle) > lower limit imposed by the decay-time of scintillation process: 2 ns (UV) & 15 ns (visible) in CF₄

600 For the future experiments $\rightarrow \sigma \times 100$ **ps**

- Time resolution measurements with 10 $SIPM$ (VUV-sensitive MPPC) \rightarrow higher statistics
- Measurement with heavy charge particle (252-CI Fission source) \rightarrow higher scintillation yield \bullet

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 22

New O-PPAC prototypes

National Science Foundation Michigan State University

Test of the 1D OPPAC

Test beam with 5.5 MeV alpha-particle

Test beam with $10,12$ C in RCNP (Japan)

X-coordinate (mm)

2D OPPAC prototype

Collimator frame: -) 3D printing production -) OPPAC efective area = 10x10 cm² Goal: new concept for application as heavy-ion tracking capable of good position resolution $(< 1$ mm), high rate capability (1 MHz) good homogeneity & high dynamic range

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 25

Summary

New MPGD architectures:

Goals: operation of TPC in pure element gas operation (AT mode) and higher counting rate capability

- **1) Multi-layer THick Gas Electron Multiplier (M-THGEM)**
	- **-) confnement of the avalanche in a small volume within the holes**
		- **lesser photo-mediated secondary efect**
	- **-) most stable high gain in pure elemental gases**
	- **-) lower operation voltage applied between diferent electrode**
		- **lower probability to damages**
- **2) Multi-Mesh THGEM-type multiplier (MM-THGEM)**
	- **-) multi-mesh avalanche structure over large area**
	- **-) uniform electric feld in the avalanche gap**
		- **better energy resolution (?)**
	- **-) signifcant reduction of the IBF (lower IBF compared to other hole-type multiplier)**

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 26

O-PPAC: Expected Performance

-) Uniform, low-mass detector (transmission detector for heavy ions) \rightarrow low angular/energy straggling

- -) Imaging/tracking of charged particles
- -) Good time resolution (as low as few hundred pico-second)
- -) Good energy resolution
	- High scintillation yield and light readout decouple form charge/light avalanche process \rightarrow high SNR
- -) Position resolution (<1 mm based on light CG) could be improved by dedicated algorithm that includes other factors (light dispersion, etc.)
- -) Wide dynamic range in Geiger-mode operation (in proportional avalanche mode, pressure of the filling gas can be adjusted depending on application)

O-PPAC: Potential Applications

- \checkmark Applications of conventional PPAC:
	- -) Detection of fast-particle (i.e. time-of-flight measurement)
	- -) Transmission Imaging/tracking of heavy ions
		- (i.e. as focal plane detector in magnetic spectrometer or in mass separator)

\checkmark Medical Applications:

 Beam diagnostic (hadron-therapy applications as position/profile online beam monitor, online treatment plan optimization and fast-interlock, proton range radiography for dosimetry study)

Heavy-ions radiography/tomography

National Science Foundation Michigan State University

Marco Cortesi, June 2018, Slide 27