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Outlines:
-) New MPGD structures for tracking applications
-) The Optical-PPAC
-) Summary and Conclusions
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AT-TPC @ NSCL

Operational mechanism of gaseous tracking devices: 
collection of ionization formed along the charged particle 
tracks & amplifying that ionization to create a detectable signal.

E Wire-Based Detector: 
“Mechanics”, Economic but
Secondary efects  Gain limits
Space charge  Counting-rate limits
Aging  Damage after long-term 
operation

SLOW

MPGD: move down in size & add cathodes 
very close to anodes to evacuate ions 

produced during the avalanche process

FAST

Rate Capability Limits due to space charge overcome by increasing the amplifying cell granularity
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Micro-Pattern Gas Detectors

Sauli (1997)

C
o
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n
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Iguaz et al. 2009 J. Phys. 179

55Fe X-ray (5.9 keV)

MCA Channel

High Spatial Resolution (≈40 μm)https://gdd.web.cern.ch/GDD/

Triple GEM
μ-megas

Giomataris (1996)
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“Pure” elemental gas for low-energy 
nuclear physics applications

Miyamoto et al. 2010 JINST 5 P05008 

241Am alphas
Ne with 
impurities

Single-THGEM

 H2 (alternatively iC4H10) as proton target
1 neutron pickup (p,d)
2 neutron pickup (p,t)
p-scattering

 D2 as deuteron target
1 neutron transfer (d,p)
1 proton pickup (d,3He)
Inelastic scattering (d,d')

 3He 
1 proton transfer (3He,d) 

 4He as alpha target
Inelastic scattering (4He, 4He‘), 
Isoscalar Giant Resonances excitations …
Alpha-induced reactions for astrophysical p-process

Active-Target Gases for Studying Inverse Kinematic Reactions

-) Purity (no quencher)  High Reaction Yield
-) Low-Pressure Operation  Large Dynamic Range

Endcap Detector Performance: 
Gas Gain, Energy Resolution, Spatial Resolution, 

Counting Rate Capability, Stability etc…

Micromegas
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Multi-layer THGEM (M-THGEM)

2-Layer M-THGEM 3-Layer M-THGEM

-) No loss of charge 
 high gain @ low voltage

-) Robust avalanche confnement 
                     lower secondary efects
-) Long avalanche region 
                     high gain @ low pressure
-) Field geometry stabilized by inner electrodes

     reduced charging up

Single 2-layer M-THGEM

Manufactured by multi-layer PCB techniques out of FR4/G-10/ceramic substrate

Cortesi et al. RSI 88, 013303 (2017)
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Three-Layer M-THGEM vs Single-layer THGEM

-) Lower voltage applied to each stage
           low energy released during discharges
          low probability to damages

-) True confinement of the electron avalanche 
  inside the THGEM hole

 higher gain

  

Lower photon-mediated secondary effects 
in pure noble gas at low pressure

M-THGEM hole THGEM hole
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Multi-layer THGEM (M-THGEM): performance

Cortesi et al. RSI 88, 013303 (2017)

Ceramic M-THGEM
10x10 cm2
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M-THGEM: photo-feedback suppression

Constant Maximum 
Achievable Gain!

No signifcant loss of 
e- collection efciency

Low ion backfow!
Double 3layer  few %

Maxwell-Garfeld Simulations

Collector

Multiplier

“Collection” operation mode:
-) The frst THGEM acts 

as a “collector” – no multiplication
-) Avalanche multiplication occurs 

in the lower THGEM elements        

Cortesi et al. RSI 88, 013303 (2017)
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Cortesi et al., Rev. Sci. Ins. 88, 013303 (2017)

M-THGEM: Applications at NSCL (1)

MM

-) M-THGEM as pre-amplifcation in pure elemental gas
-) Gas gain variation by biasing the Micromegas pads
-) Larger versatility
-) Good ion-back fow reduction

FR4
(0.6 mm)

ON OFF

AT-TPC readout
Hybrid MM + M-THGEM gas amplifer
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Features of new DC readout:
-) Simple (construction) and robust
-) Good ion-backfow suppression 
-) High detector gain at low pressure (MM+THGEM)
-) Counting rate capability (~ a few tens kHz)
-) Moderate dynamic range
-) Pulse-Mode Gating
-) High granularity (all pad are readout individually) 

 Good (sub-mm) position resolution

Tracking for the S800 Focal Plane Detectors System

Position-sensitive Micromegas readout 
+ 2L M-THGEM-based pre-amplifcation 

stage + GET front-end electronics
Intermediate Zap board
(includes protection circuitries 
for the GET electronics and 
16X2 channels reserved for 
the Ionization chamber 
signals)

Front end AsAd board 
-) 4 AGET per board, 64 channel each  512 channels
-) 480 channels for the MM-readout
-) 16 channels for the ionization chamber
-) 16 spare channels 

M-THGEM: Applications at NSCL (2)
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Multi-Mesh THGEM-type multiplier 
(MM-THGEM)

Holes Meshes

MM-THGEM
Maxwell-Garfeld Simulations

R. de Olivera & M. Cortesi 2018 JINST 13  P06019

Advantages:
-) Uniform avalanche feld
-) Lower Ion backfow
-) Double/Replaceable MM over large area
Disadvantages:
-) Lower e- transparency
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MM-THGEM: effective gain

  

-) High effective (single photo-electron) gain (> 105) with single element
-) Higher gain when the amplification is confined inside the meshes (α=1)
-) High stability and high max achievable gain at low operational voltage

Single MM-THGEM
R. de Olivera & M. Cortesi 2018 JINST 13  P06019
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MM-THGEM: reduction of Ion BackFlow (IBF)

  

Two cascade elements
MM-THGEM + WELL_THGEM

MM-THGEM  Electron multiplication & stop the ions
WELL-THGEM  Extra gain

Gain ~ 20
IBF ~2%

R. de Olivera & M. Cortesi 2018 JINST 13  P06019
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Gain ~ 3000

Gain ~ 500

Gain ~ 20

Two cascade elements
MM-THGEM + WELL-THGEM

MM-THGEM/WELL-THGEM: IBF

IBF smaller than with conventional double THGEMs

R. de Olivera & M. Cortesi 2018 JINST 13  P06019
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Optical Parallel-Plate Avalanche Counter
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Conventional Parallel-Plate Avalanche Counter (PPAC)

2D imaging with double-PPAC PPAC 
-) Three fat electrode plates separated by 2-3 mm
-) Middle plate (Anode) at high voltage
-) X-Y localization via segmented (strips) cathodes
-) Gap flled with suitable gas (i.e. iC4H10)     

        at low pressure (5-50 torr)

+HV

E E

Charged 
Particle

X-Coor. Y-Coor.

Low pressure 
iC4H10

Charge Division Method Delay-Line Method

Q1 Q2

X = f(Q1,Q2) X = f(t1,t2)
t1

t2
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Let there be “scintillation” light

Idea: localization based on recording electroluminescence light instead of charge

Advantages:
-) New semiconductor technologies (APD, SiPM …) 
-) High SNR 
-) No limits on photon-production (Charge  Raether limit)
-) Compact and high granularity
-) Versatile- large area
-) Better energy resolution

Imaging with Conventional double PPAC

-) Time resolution  ~200 psec
-) Position resolution  ~1-2 mm
-) Counting rate capability 
        Charge division Meth.  few tens kHz
        Delay-line Meth.  few hundreds kHz
-) Moderate gas gain  heavy charged particle
-) Simple and low cost
-) low-mass detector but not uniform 
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ΔV
New photo-sensor technology:

Motivation:
• Uniform, low-mass detector
• High spatial resolution, good time resolution
• High counting rate

Concept:
• Volume flled with scintillating gas 
               (CF4, TEA/TMAE mixture, etc.)
• Ionizing particle that crosses the PPAC, 

trigger avalanche/streamer process
• Secondary scintillation photons are generated 
• 2D position of the particle is sensed by arrays 

of photo-sensors

Properties
-) Easy construction/ maintenance 
-) Uniform, low-mass detector
-) High spatial resolution (limited by the SiPM granularity)
-) Fast signal (sub-n rise time)  Good time resolution
-) SiPM: single-pe sensitivity -> high sensitivity
-) Good SNR  high detection efciency
-) High Counting rate (limited by PPAC operation)
-) Geiger mode  infnity dynamic range 

Optical Parallel-Plate Avalanche Counter (O-PPAC) 

Producers:
SensL*
Hamamtsu*
Excelitas
Optoi
AdvancedSid
etc. etc.

-) Compact and small  array
-) Low bias
-) Single pe sensitivity (SiPM)
-) Insensitive to magnetic feld
-) High PDE 
         over large wavelength range
                (including VUV range)

20-40 individual photo-sensors per array

  DAQ based on GET
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O-PPAC: Simulations

Parameters:
•Scintillating Gas: Type (i.e. CF4), pressure and thickness of the active area

 Luminescence spectrum and photon yield
 Deposited energy 

Primary beam energy straggling and angular dispersion 
•Dimension of the photo-sensor 

 Photon collection efciency
 Spatial resolution
 Complexity and cost

•Collimation of the Photo-sensors
 Photon collection efciency
  Spatial resolution

Collimators (10 mm)

area = 1x3 mm2

Pitch = 2 mm
50 sensor/array

GEANT4

Photo-sensor

M. Cortesi et al. 2018 JINST 13 P10006



Marco Cortesi, June 2018, Slide 20

GET Workshop
Université de Bordeaux,  October 2018

O-PPAC Feasibility Study: experimental setup

Hamamatsu



Marco Cortesi, June 2018, Slide 21

GET Workshop
Université de Bordeaux,  October 2018

Charge-Light Correlation
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O-PPAC: Time resolution

100 ps
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New O-PPAC prototypes

Timing
Tracking

Goal  < 100 ps 

Position sensitive array of 10 DUV-MPPCs    8 DUV-MPPC in parallel
Test beam with 

heavy ions beams

M. Cortesi et al. 2018 JINST 13 P10006

Hamamatsu VUV3-MPPC
-) Ceramic package, 50 um pixel pitch
-) Quartz window
-) Crosstalk, afterpulse suppression
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Test of the 1D OPPAC

Test beam with 10,12C in RCNP (Japan) -------------------------------------------

Test beam with 5.5 MeV alpha-particle ------------------------------------------

Good detection efciency (~ 100%) 
Spatial resolution (~3 mm) limited by the soft collimation
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2D OPPAC prototype 
Collimator frame:
-) 3D printing production
-) OPPAC efective area = 10x10 cm2

KETEK PM33-WB

Goal: new concept for application as heavy-ion tracking 
capable of good position resolution (< 1 mm), high rate 
capability (1 MHz) good homogeneity & high dynamic range

DAQ based on GET electronics

CF4(20-30 torr)

25 SiPMs on each side (100 channles)
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Summary

New MPGD architectures:
Goals: operation of TPC in pure element gas operation (AT mode) and 
higher counting rate capability

1) Multi-layer THick Gas Electron Multiplier (M-THGEM)
   -) confnement of the avalanche in a small volume within the holes

 lesser photo-mediated secondary efect
   -) most stable high gain in pure elemental gases
   -) lower operation voltage applied between diferent electrode

 lower probability to damages 
 
2) Multi-Mesh THGEM-type multiplier (MM-THGEM)
   -) multi-mesh avalanche structure over large area
   -) uniform electric feld in the avalanche gap 

 better energy resolution (?)
   -) signifcant reduction of the IBF 

(lower IBF compared to other hole-type multiplier)
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O-PPAC: Expected Performance
-) Uniform, low-mass detector (transmission detector for heavy ions)  low angular/energy straggling
-) Imaging/tracking of charged particles 
-) Good time resolution (as low as few hundred pico-second)
-) Good energy resolution
    High scintillation yield and light readout decouple form charge/light avalanche process  high SNR
-) Position resolution (<1 mm based on light CG) 
    could be improved by dedicated algorithm that includes other factors (light dispersion, etc.)
-) Wide dynamic range in Geiger-mode operation 
    (in proportional avalanche mode, pressure of the filling gas can be adjusted depending on application)
 

 Applications of conventional PPAC:
       -) Detection of fast-particle (i.e. time-of-flight measurement)
       -) Transmission Imaging/tracking of heavy ions 

(i.e. as focal plane detector in magnetic spectrometer or in mass separator)
 Medical Applications:
       Beam diagnostic (hadron-therapy applications as position/profile online beam monitor, online treatment plan 

optimization and fast-interlock, proton range radiography for dosimetry study)
 Heavy-ions radiography/tomography 

O-PPAC: Potential Applications
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