GET Worksop 2018 - Talence - France

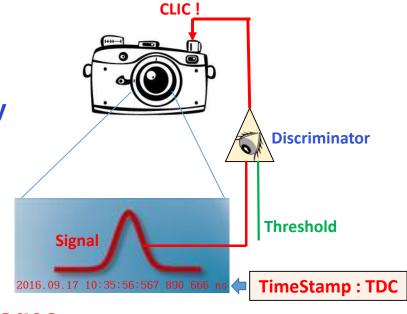
SAMPIC-BASED SYSTEMS FOR INSTRUMENTATION WITH FAST DETECTORS

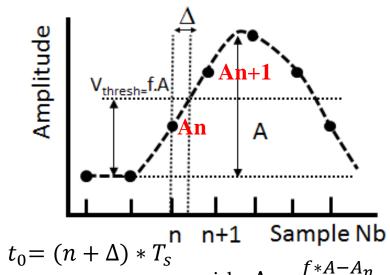
- D. Breton², C.Cheikali², E. Delagnes¹, H. Grabas^{1,3},
- O. Lemaire², J. Maalmi², P. Rusquart², P. Vallerand²
 - ¹ CEA/IRFU Saclay (France)
 - ² CNRS/IN2P3/LAL Orsay (France)
 - ³ Now with SCICPP Santa Cruz (USA)

This work has been initially funded by the P2IO LabEx (ANR-10-LABX-0038) in the framework « Investissements d'Avenir » (ANR-11-IDEX-0003-01) managed by the French National Research Agency (ANR)

The *TICAL* ERC project (grant number 338953 from EU; PI: Paul Lecoq) has also contributed to the developments of the TOT features integrated in the chip

INTRODUCTION

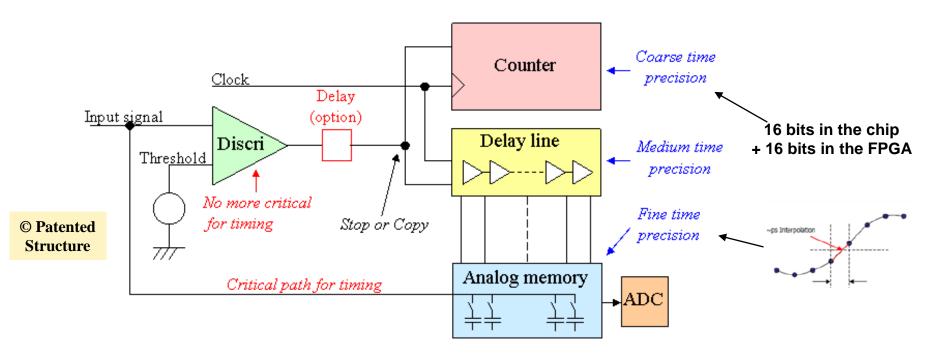

- Systems based on a circuit: SAMPIC, dedicated to instrumentation with fast detectors. Can be desktop-lab solution as well as used for large scale detectors.
- ➤ What is SAMPIC? It is a full custom ASIC (LAL/IRFU) based on a new concept : Waveform-TDC
- We developed different types of **modules** based on this circuit.
- At LAL, we developed our own **protocol** and libraries for the **control** and **readout**, based on **USB** and **UDP** (copper or optical link)
- > Acquisition Software: for plug & play systems
- Features and Performance of the circuit/modules
- > Examples of application

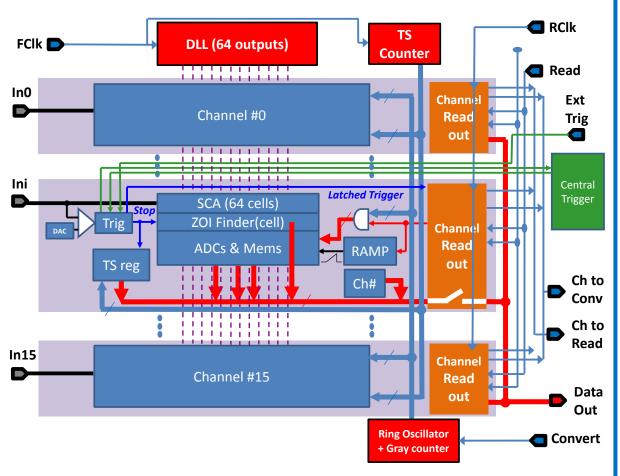

The « Waveform TDC » Concept (WTDC)

WTDC: a TDC which also permits taking a picture of the real signal. This is done via sampling and digitizing only the interesting part of the signal.

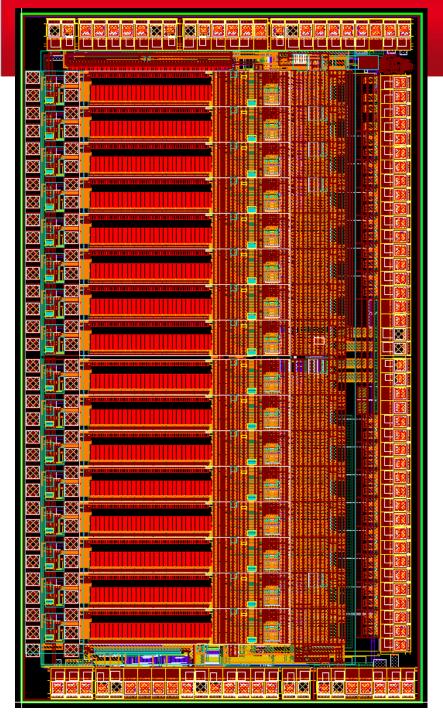
Based on the digitized samples, making use of interpolation by a digital algorithm, fine time information will be extracted.

with $\Delta = \frac{f * A - A_n}{A_{n+1} - A_n}$

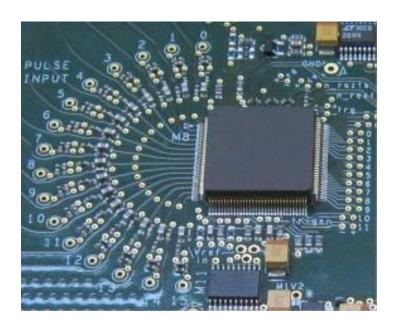



- Advantages:
- Time resolution ~ few ps
- No "time walk" effect
- Possibility to extract other signal features: charge, amplitude...
- Reduced dead-time...
- But:
- waveform conversion (200 ns to 1.6 μs) and readout times don't permit counting rates as high as with a classical TDC

THE « WAVEFORM TDC » STRUCTURE

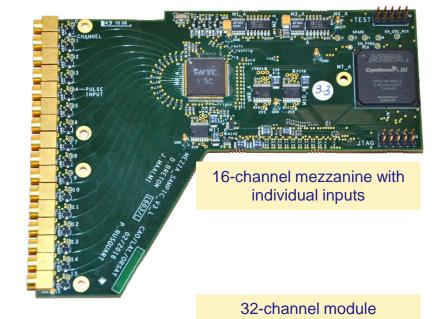

- Mix of DLL-based TDC and of analog-memory based Waveform Digitizer
- The TDC gives the time of the samples and the samples give the final time precision after interpolation => resolution of a few ps rms
- Digitized waveform gives access to signal shape...
- Conversely to TDC, discriminator is used only for triggering, not for timing

Global architecture of SAMPIC



- One Common 16-bit Gray Counter (FClk up to 160MHz) for Coarse Time Stamping (TS).
- One Common servo-controlled DLL: (from 0.8 to 8.5 GS/s) used for medium precision timing & analog sampling
- 16 independent WTDC channels each with :
 - √1 discriminator for self triggering
 - ✓ Registers to store the timestamps
 - √64-cell deep SCA analog memory
 - ✓ One 11-bit ADC/ cell (Total : 1024 on-chip ADCs)
- One Central Trigger block
- One common 1.3 GHz oscillator + counter used as timebase for all the Wilkinson A to D converters.
- Read-Out interface: 12-bit LVDS bus running at > 160 MHz (> 2 Gbits/s)
- SPI Link for Slow Control

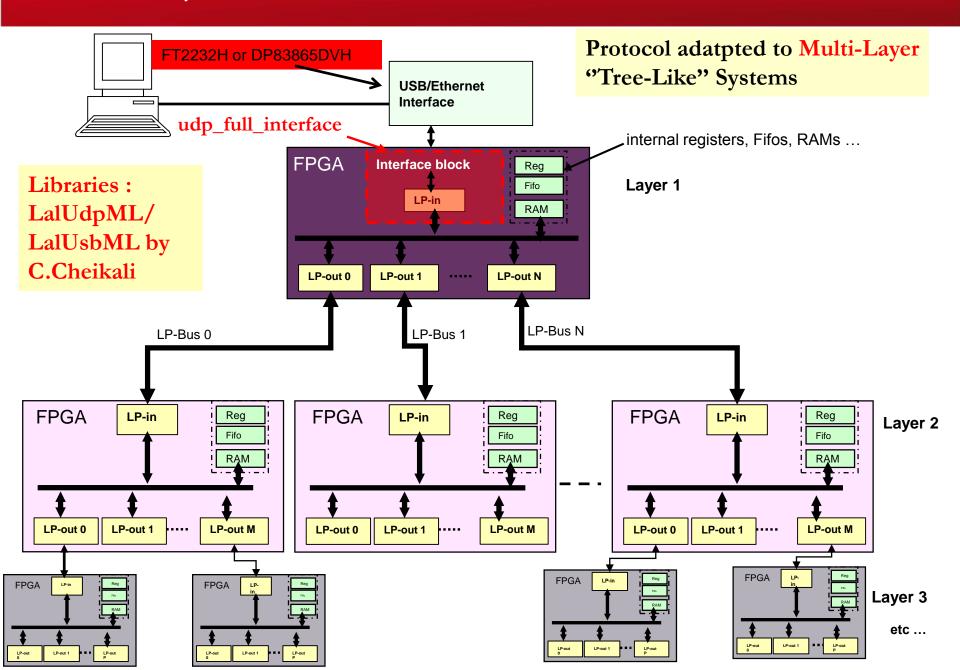
SAMPIC (V3)


- Current version is V3 received in October 2017
- A new version with bug correction in case of saturation will be delivered soon

- Technology: AMS CMOS 180nm
- Surface: 8 mm²
- Package: QFP 128 pins, pitch of 0.4mm

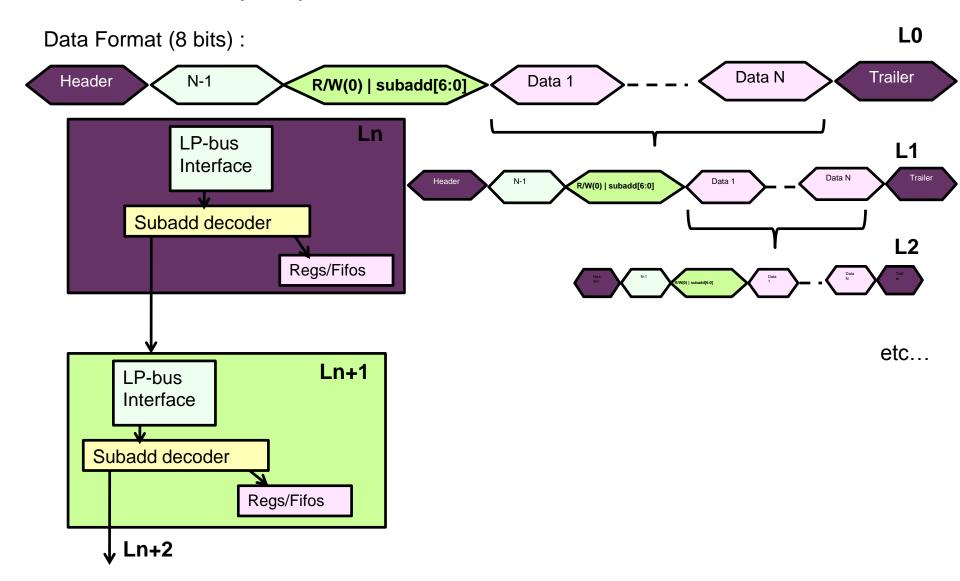
FIRST SAMPIC MODULE

- First module developed is a 32-channel module integrating 2 mezzanines
- This mezzanine has a "L" shape permitting the injection of 16 channels via individual MCX connectors
- 1 SAMPIC/mezzanine

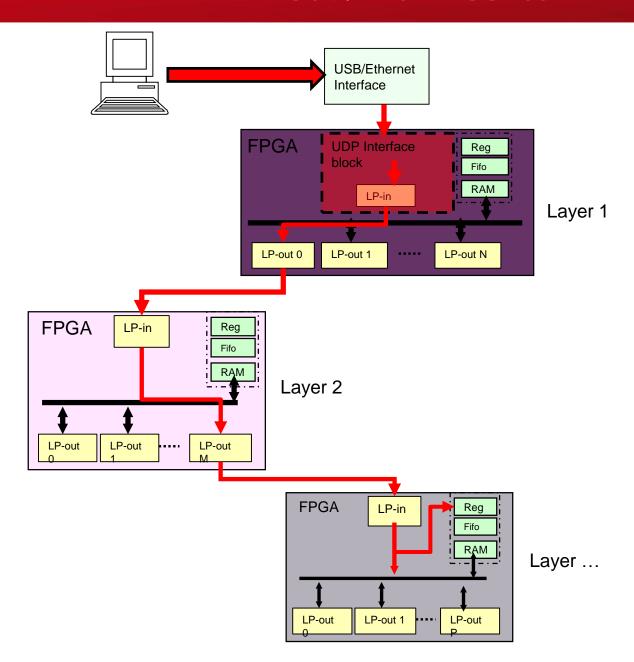


AND THE RESIDENCE OF THE PARTY OF THE PARTY

- The motherboard is a multi-purpose standard board developed at LAL with USB2 & Gbit Ethernet UDP (RJ45 & Optical)
- 32 channels => 3 layers of boards

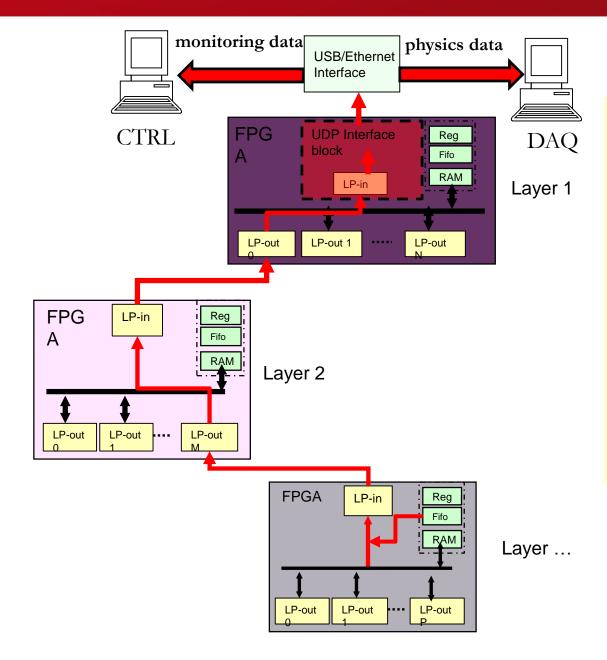


CONTROL/READOUT PROTOCOL: LP-BUS MULTI-LAYER



LOCAL PARALLEL BUS PROTOCOL

❖ « russian dolls » principle:


CONTROL ACCESS

LAL protocol « Russian dolls » control access:

- Frames are decapsulated at each layer
- Frames cross transparently each layer till the final destination.

READOUT ACCESS

« Russian dolls » LAL protcol, readout access:

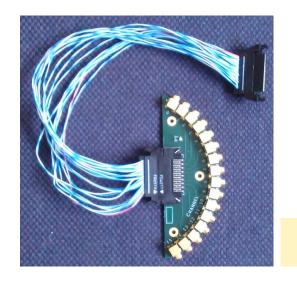
- Frames are encapsulated at each layer.
- Data frames cross transparently each layer.
- While using UDP:
 Possibility to detect
 DAQ data and control
 Data and send them to two different ports.

RECENT MODULE DEVELOPMENTS

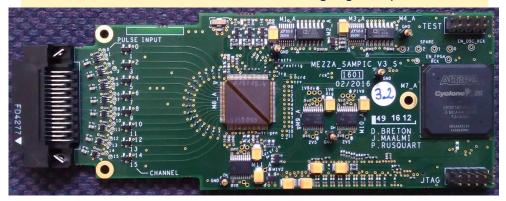
- In response to users' requests, we developed new modules and systems in order to increase the number of channels
- They make use of the new motherboard also developed for the WaveCatchers.
- 64-channel modules and board are available.
 - **256-channel** mini-crate is **under development** with new more integrated 64channel boards.
- Acquisition through Gbit Ethernet UDP (RJ45 or Optical), USB2 and soon USB3

64-channel module with individual inputs

64-channel module with flat cable inputs (can be digital or analog)



256-channel mini-crate


64-channel board with flat cable inputs (can be digital or analog)

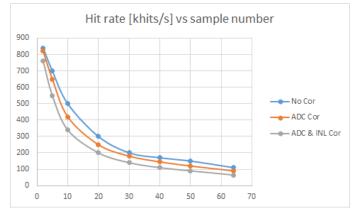
DAUGHTERBOARD DEVELOPMENTS

- Various mezzanine cards have been developed for housing the new versions of the chip (including the digital differential option)
 - 1. Analog/digital input with MCX
 - Analog/digital input with flat cable
 - Differential digital input with flat differential cable
- Adaptors have also been developed

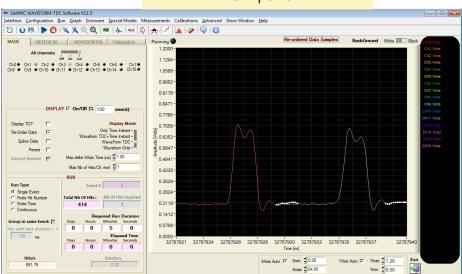
Mezzanine with flat cable analog/digital input

Mezzanine with flat cable differential digital input

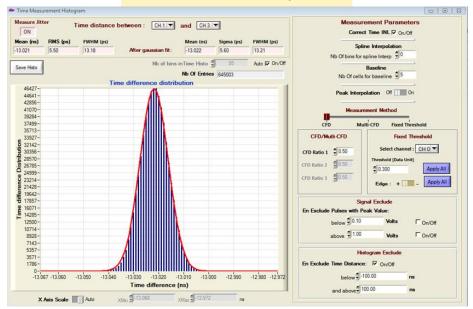
16-channel individual to digital differential flat cable adaptor


16-channel individual to flat cable adaptor

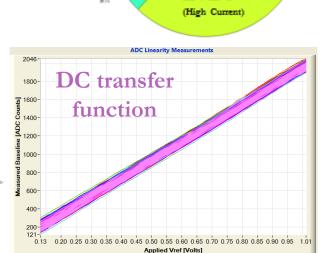
ACQUISITION SOFTWARE


- Acquisition software has been developed (& soon C libraries)
- => full characterization of the chip & module
- Special display for WTDC mode
- Data saving on disk.
- Used by all SAMPIC users.
- A smart panel dedicated to time measurement is available. It permits selecting the parameters used for extraction of time
 - Optional spline interpolation on the peak area and on the threshold area
 - Fixed threshold option
 - CFD: ratio, nb of applied thresholds (1 to 3)

 Recorded hit rate depends on: the number of waveform samples, the corrections applied (ADC, Time INL), the saving on disk mode (ASCII,


binary)...

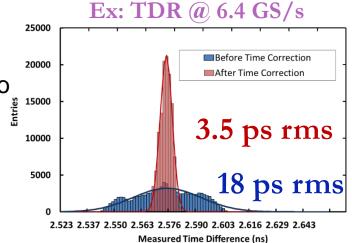
Main panel


Time Measurement panel

SAMPIC GLOBAL PERFORMANCES

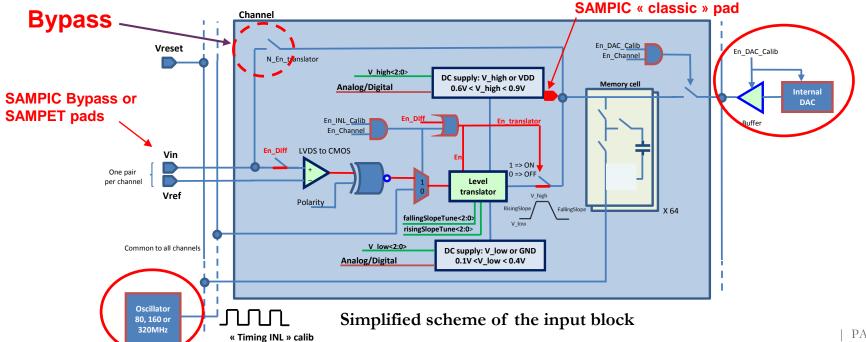
- Power consumption: 10mW/channel
- 3dB bandwidth > 1 GHz
- Discriminator noise ~ 2 mV rms
- Counting rate > 2 Mevts/s (full chip, full waveform), up to 10 Mevts/s with Region Of Interest (ROI)
- Wilkinson ADC works with internal 1.3 GHz clock
- Dynamic range of 1V
- Gain dispersion between cells ~ 1% rms
- Non linearity < 1.4 % peak to peak</p>
- After correction of each cell (linear fit): noise = 0.95 mV rms
- Time Difference Resolution (TDR):
- Raw non-gaussian sampling time distribution due to DLL non-uniformities (TINL)
- Easily calibrated & corrected (with our sinewave crossing segments method [D. Breton&al, TWEPP 2009, p149])

Power distribution


DLL+

buffers

Sampling


logic

LVDS

SAMPIC V3 INPUT BLOCK

- Currently used version of the chip submitted in May 2017
- Translator input block :
 - Input signal can feed the memory directly (Bypass Mode) or pass through a translator (SAMPET mode: from differential digital to internal levels optimized for SAMPIC → compatible with SuperNiNo SLVS output level)
 - It permits among others:
 - Self calibration of the chip (amplitude & time)
 - Compatibility with (small amplitude) digital differential signaling
- Fixed amplitude at translator output → we only need to read a few samples (ROI) and fast conversion can be used (≤ 8 bits) => behaves like a TDC

TIME RESOLUTION:

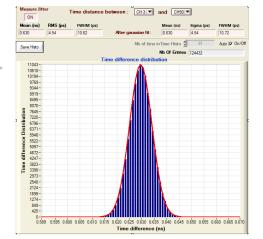
External vs Self Calibration

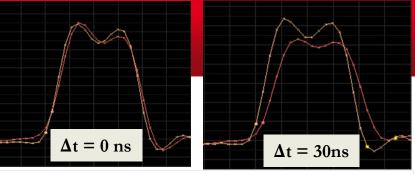
 The new DLL has been re-worked for improving the resolution for the lower sampling frequencies

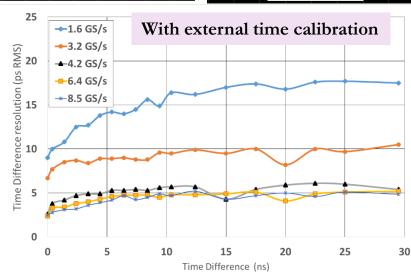
(3 different sizes of starving transistors can be selected in the main DLL in order to optimize its INL and jitter)

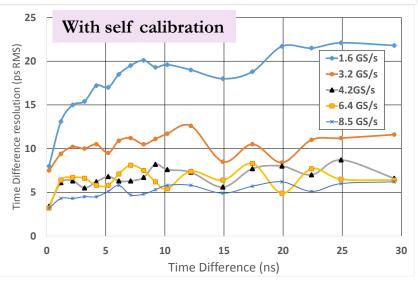
- Delays made by a cable box => rise time degrades with delay ...
- With external time-calibration :
 - A TDR of ~5 ps rms for 4.2< Fs<8.5 GS/s</p>
 - The TDR < 10 ps rms for 3.2 GS/s</p>
 - TDR < 18 ps rms for 1.6 GS/s</p>
- With self-calibration
 - Limited jitter degradation (~20%)

Permits full integration in compact detection

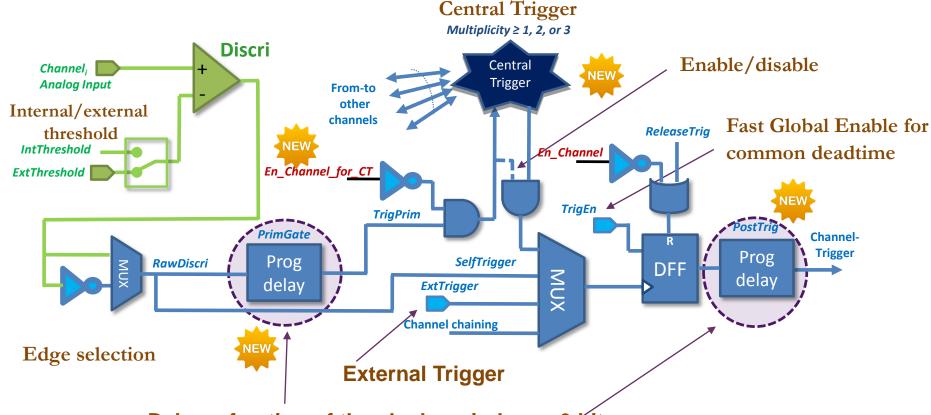

systems ...




@ Fs = 6.4 GS/s


 $\Delta t = 0.63 \text{ ns}$

=> TDR = 4.5 ps rms

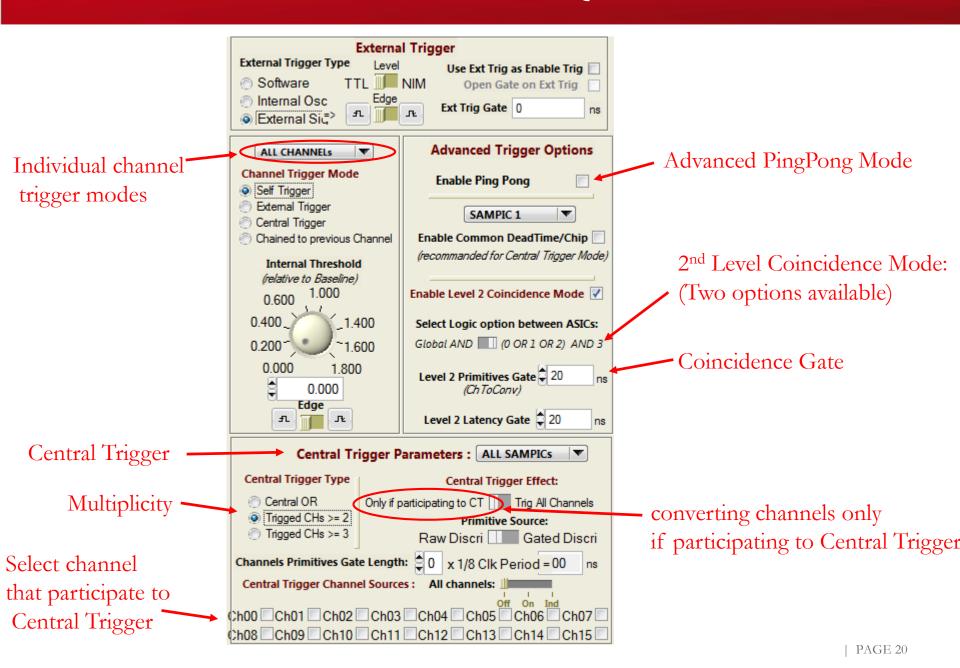


SUMMARY OF MAIN FEATURES OF SAMPIC V3

- Improved "central trigger" (OR, multiplicity of 2 & 3) with possibility of common deadtime or selecting only channels participating in decision
- Improved PostTrig (very useful for low frequencies)
- Channel chaining option: user-defined sets of channels can be chained in time.
- "Ping-Pong" (toggling) mode: channels work in pairs.
- Integrated TOT measurement and trigger filter based on TOT
- All DACs necessary for controlling the chip have been integrated
 - ADC resolution internally selectable between 7 and 11 bits
- Auto-conversion mode for ADC: the conversion can be automatically started when an event is detected, independently for each channel.
 - Reduce the required external digital electronics
 - But the the handshake mode with the FPGA permits building a 2nd Level trigger based on many chips for a common event selection
- **Auto-calibration** (Time INL): dedicated signal sources are implemented in the chip in order to perform time INL calibrations in standalone.

TRIGGER SCHEME

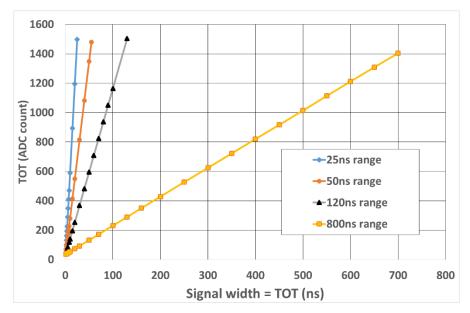
- One very low power signal discriminator/channel
- One 10-bit DAC/channel to set the threshold (which can also be external)
- Several trigger modes programmable for each channel:



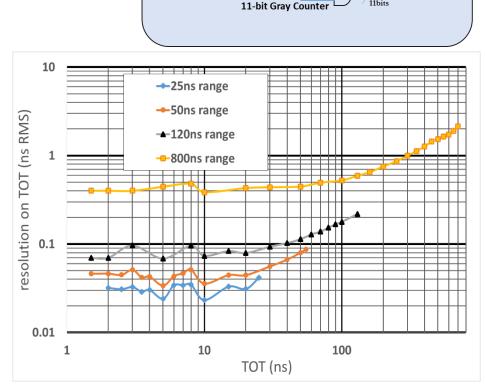
Delay = fraction of the clock period over 3 bits

Only the triggered channels are in dead time

TRIGGER PANEL IN THE DAQ SOFTWARE



TOT MEASUREMENT


 SAMPIC is designed to digitize a short signal or only a small part of a longer one (eg rising edge) to extract the timing → then the other edge is missed

Addition of a ramp-based Time to Amplitude Converter for each channel seen as a 65th memory cell during digitization

→ ~10bit TOT TDC

Measurement ranges between 2 and 700 ns.

Ramp generato

En_TOT_switch

V TOT

Convert ch(i)

Cs = 1pF

comparator

TOT DATA

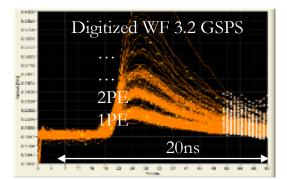
current_ramp

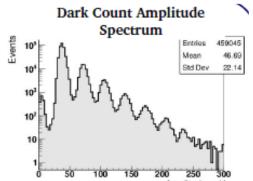
Start TOT ramp

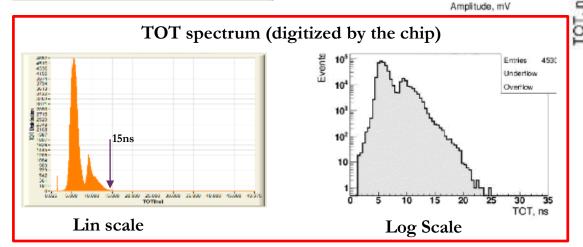
TAKING DATA WITH DETECTORS

- SAMPIC modules are already used with different detectors on test benches or test beams. A lot of examples were presented at the WaveCatcher and SAMPIC workshop the 7th and 8th of February 2018 in Orsay.
- Tested with PMTs, MCPPMTs, APDs, SiPMs, fast Silicon Detectors, Diamonds: performances are equivalent to those with high-end oscilloscopes
- Different R&Ds ongoing with the TOF-PET community (CERN, IRFU,...)
- SAMPIC has been used for test beams of TOTEM at CERN
- It was also used for fast mesh-APD characterization and test beams
- TOTEM has developed a CMS-compatible motherboard housing SAMPIC mezzanines which has been installed on the LHC
- SAMPIC is used for test beams of SHIP collaboration. It is now considered as baseline readout option for the Fast Timing Detector, the Surround Background Tagger and the Muon Detector.
- Envisaged for T2K Upgrade: 256-channel Timing Detector.

ON-CHIP TOT FILTER


 Goal: demonstrate the noise rejection capability using the TOT filter which rejects events with TOT < programmable limit


SiPM coupled to crystals (here KETEK SiPM + PbWO4 + ²²Na Source,


@ 20°C => 1PE ~ 40mV

Th = 20 mV (0.5 PE), TOT_Filter OFF:

=> 700 kHz rate of events / 4.5 MHz raw rate (dark count)

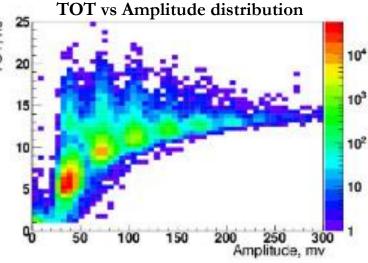
© S. Sharyy

3x3x5 mm3 200 Ph/MeV

3x3mm

20°C

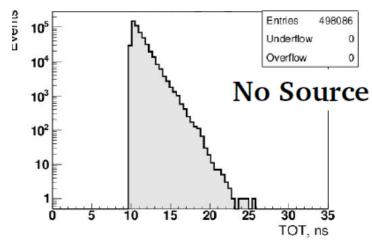
PBWO4
SiPM

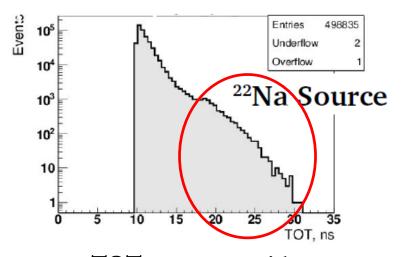

Only few photons

Noisy

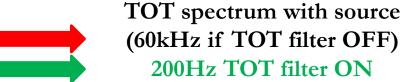
Ampli 40dB

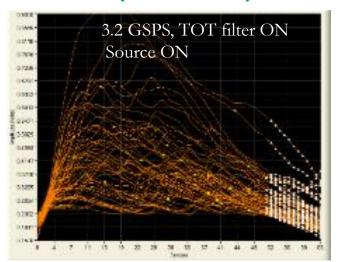
SAMPIC


SiPM: KETEK PM3350TP-SB0 3x3 mm², 50µm pitch, trench design, Operation @ 29V (2.5V overvoltage)

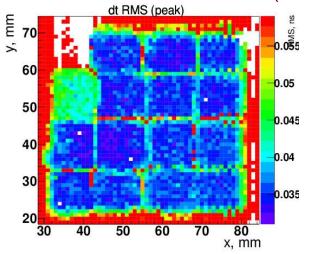


NEW IN SAMPIC V3 : ON-CHIP TOT FILTER => NOISE FILTERING

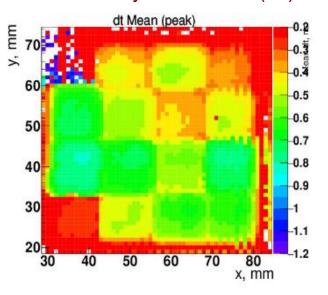

Threshold: 50 mV (1.25 PE), TOT filter = 10ns


© S. Sharyy

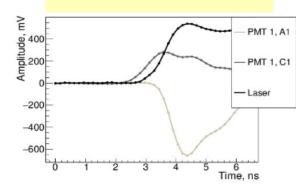
TOT spectrum without source (60kHz if TOT filter OFF)



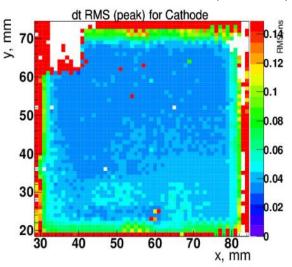
=> 140 Hz from source!


99.9% of the noise is rejected

SCAN TEST OF MCP-PMT © S. Sharyy


PMT resolution for anodes (ns rms)

PMT delay for anodes (ns)


PLANACON XP85012 used for CALIPSO/PECHE: 64 channels grouped by 4.

- We measure time difference between Laser and Signals.
- Step of 1mm, 2 sec / per stage, 0.5 sec / move
- SAMPIC in two-level trigger coincidence mode (anode & laser)
- Data taking rate: 50 kHz

Total Scanning Time: 2 hours!

PMT resolution for cathode (ns rms)

PMT delay for cathode (ns)

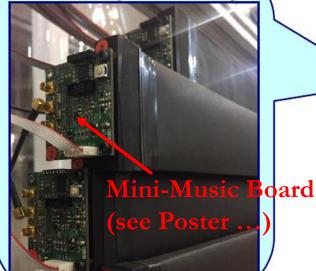
OTHER SPECIAL FEATURE

External Trigger Input:

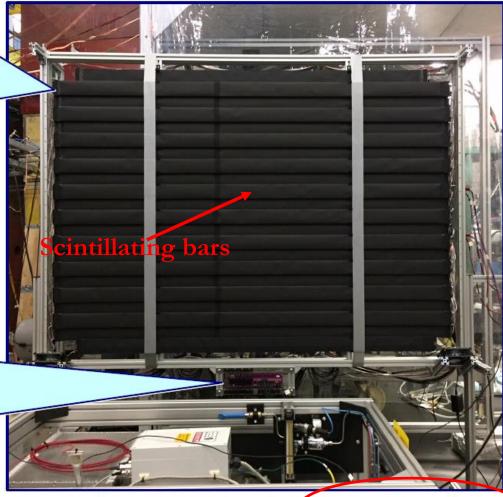
- This input can sample a counter running synchronously with the SAMPIC clock: 40- bits timestamp.
- Each trigger input is also associated to a Trigger ID (24 bits)
- In order to be able to synchronize multiple sub-systems in testbeams, a 16 bit-Trigger ID can also be decoded from a **serial stream** (RS232 like) on the Trigger Input. It has been used by TOTEM in test beam this summer with a fast TPC.

Multipurpose I/O connector : (example : SPI for MUSIC boards)

(Barcelona))



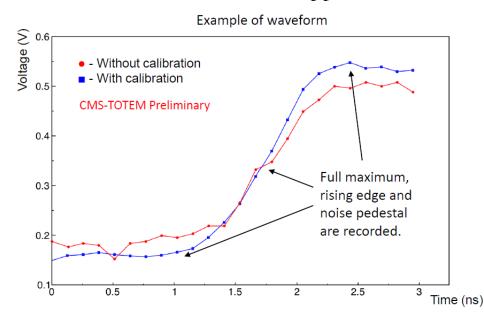
External TrigIn


TIMING DETECTOR PROTOTYPE FOR SHIP

(© A.KORZENEV)

Readout by SiPM-arrays

Testbeam Aug 15 – Sep 19, East hall T10 of CERN PS


Bar length 1.7m, 2 side readout, 80 ps time resolution arXiv:1709.08972

64ch SAMPIC module

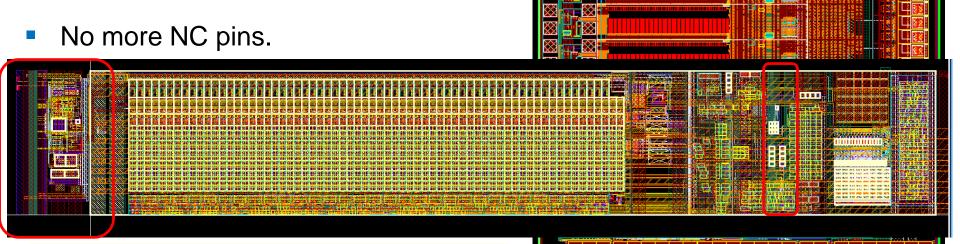
PROTOM TIMING SYSTEM OF TOTEM (© E.BOSSINI)

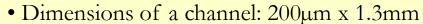
- ➤ 192 channels of **SAMPIC** mezzanines were mounted on motherboards especially designed by the **TOTEM** team, also housing HPTDCs
- ➤ This permitted interfacing an almost standard SAMPIC firmware with the environment of the CMS Trigger and DAQ
- Sampling frequency was set to 7.8 GS/s and ADC conversion to 8 bits
- ➤ Waveform length was set to 24 samples
- ➤ Hit rate per channel was close to 1 MHz
- > Calibration corrections were applied **offline**

CONCLUSION

SAMPIC

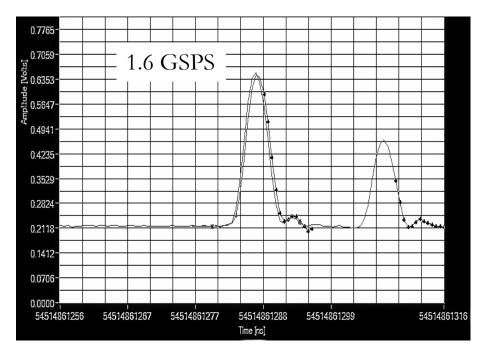
- SAMPIC is a full System On Chip:
 - Analog or digital input, fully digital output
 - All the DACs and calibration generators are integrated
 - It just requires power, clock, and a simple interface with an FPGA
 - Small power consumption ~10 mW/channel
 - All the channels can be fully independent
 - Raw counting rate can go >> 100 kHz/ch.
 - Large choice of smart triggers
- It can be used for a highly integrated tiny module (cm³) as well as for large scale detectors (nuclear or high energy physics, TOF-PETs, ...).
- Different types of modules have been developed: 16 to 256-channel modules.
- On going licensing with CAEN.
- > End of AMS 0,18 μm => chip production ongoing and possible migration to another technology (but original IBM 0.18μm should now be accessible)
- For more information:

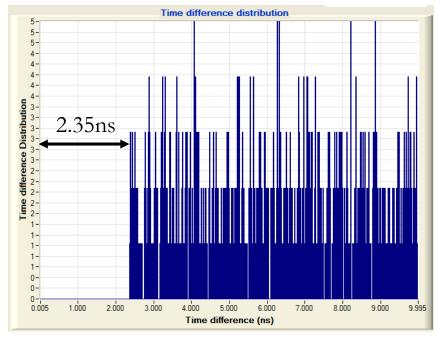

SAMPIC: PERFORMANCE SUMMARY


		Unit
Technology	AMS CMOS 0.18μm	
Number of channels	16	
Power consumption (max)	180 (1.8V supply)	mW
Discriminator noise	2	mV rms
SCA depth	64	Cells
Sampling speed	0.8 to 8.5 (10.2 for 8 channels only)	GSPS
Bandwidth	> 1	GHz
Range (unipolar)	~ 1	V
ADC resolution	7 to 11 (trade-off time/resolution)	bits
SCA noise	< 1	mV rms
Dynamic range	> 10	bits rms
Conversion time	0.1 (7 bits) to 1.6 (11 bits)	μs
Readout time / ch @ 2 Gbit/s (full waveform)	< 450	ns
Single Pulse Time precision before correction (4.2 to 8.5 GS/s)	< 15	ps rms
Single Pulse Time precision after time INL correction (4.2 to 8.5 GS/s)	< 3.5	ps rms

BACKUP SLIDES

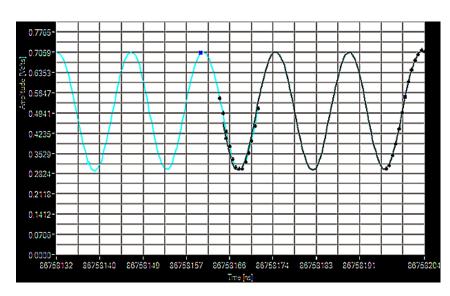
SAMPIC_V3 LAYOUT

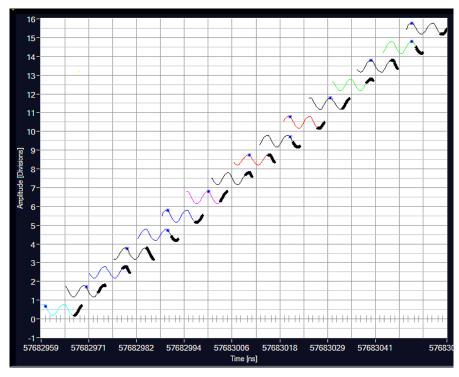

- Double raw of input pads:
 - External row: standard cabling for usual applications where translator stage can be used and self calibration performed
 - Internal row: for optimal bandwidth, time precision and testability



PING-PONG MODE

- **PING-PONG**: use alternatively 2 SAMPIC channels, **connected or not to the same source**, to reduce the dead time and allow double or conditionnal pulse detection.
- Min re-triggering distance : 2.35 ns (see below)
- Drawback: number of channels divided by a factor 2 if source is common

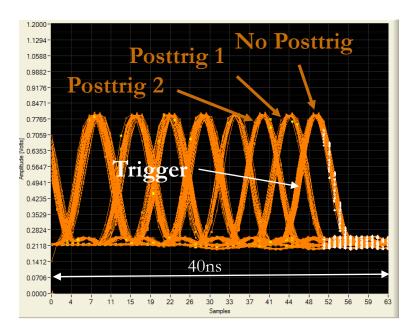

1st pulse recorded on channel 2 2nd pulse recorded on channel 3


DeadTime (measured with 2 random pulses) => Time difference distribution

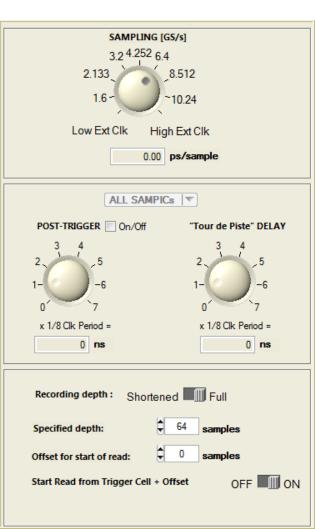
CHAINED MODE

- **Goal:** extend the depth of SAMPIC by chaining channels connected to the same source or force triggering of successive channels
- Each channel can be defined as a Master that can successively trigger N (1 to 15) other « Slave » channels.
- Tens of possible configurations
- The delay between the channels is defined by the POSTTRIG

2 channels chained @1.6GSPS

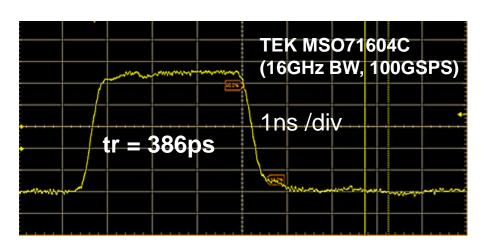

16 channels chained @6.4GSPS

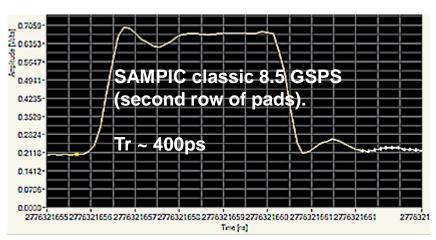
PROGRAMMABLE POSTTRIG

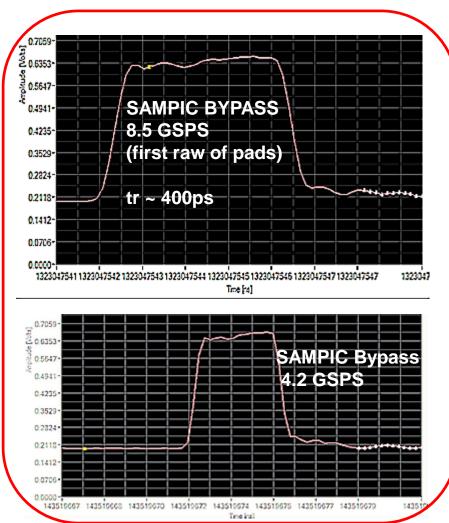

Allows to "move the signal" by fractions of the acquisition window

=> oscilloscope-like PostTrig

- 8-step (~linear) programmable asynchronous delay that must be proportionnal to the sampling frequency
- Mostly useful for low sampling frequencies

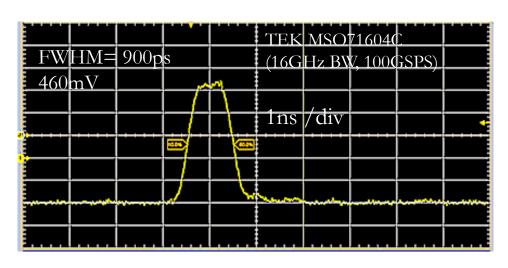


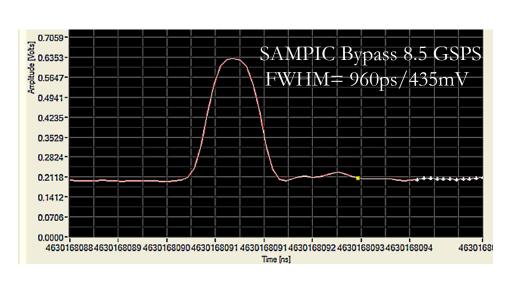

Effect of the 8 posttrig values (1.6 GSPS)

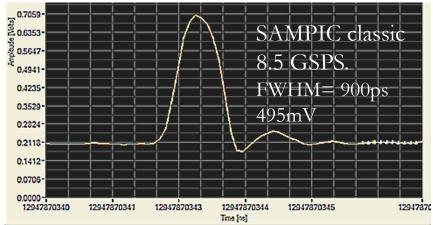


WAVEFORM RESPONSE WITH NEW INPUT CONFIGURATION

- Pulse (~460 mV pp) with sharp edges => compare the response from SAMPIC and from a 16 GSPS oscilloscope:
 - Signal produced by a LeCroy 9214 generator.
 - Permits estimating SAMPIC bypass bandwidth: > 1 GHz

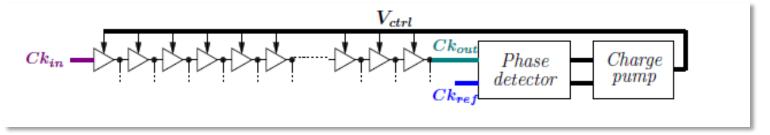






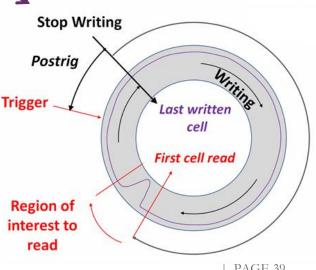
SHORT SIGNAL RESPONSE

Lecroy 9214 signal with 900 ps width

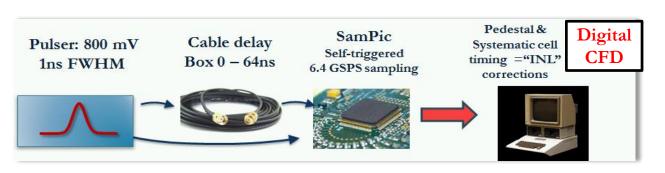


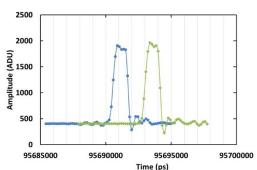
TIMEBASE: VIRTUAL CLOCK MULITPLICATION BY 64

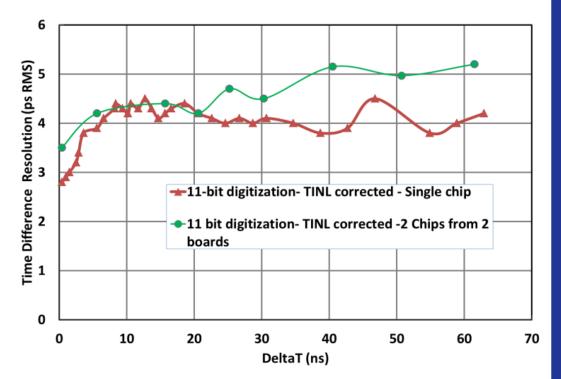

- One single 64-step Delay Line Loop. 64 = tradeoff depth/(noise + speed
- On chip servo-control to the timestamp counter clock
- Provides 64 incrementally delayed pulses with constant width used to drive the T/H switches of the 64 cells for each SCA channel
- 'virtual multiplication' by 64 of the TS Clock (100MHz =>6.4GHz)



- Each controlable delay is the cascade of 2 starved inverters (inverters with slowed-down edges)
- Drawbacks:
 - Non uniform delays along the DLL → skew that can be calibrated
 - For low sampling frequency:
 - Very slow edges (=> skew + jitter)
 - Limited locking range


ANALOG MEMORY (SCA) IN EACH CHANNEL

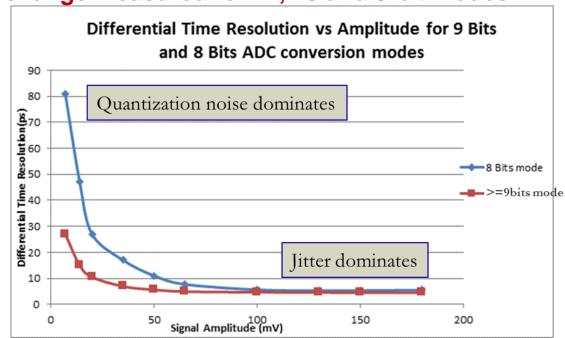

- 64-cell deep, No input buffer, single ended
- Small capacitor + simple switches
- ~ 1 V usable range, > 1.5 GHz BW
- Waveform continuously recorded (circular buffer), then **stopped** on trigger (which also catches the state of the coarse counter)
- **Trigger position marked on DLL cells => medium** precision timing and used for Optional Region of **Interest Readout (only few samples read)**
- Conversion by a Wilkinson (ramp) 11 bit ADC for each cell (clocked @1.25GHz)
- > compact and high speed for high precision: a cell/cell transfer function) calibration is required
- 1.6µs conversion time that can be decreased if lower precision is required.



ΔT RESOLUTION VS DELAY

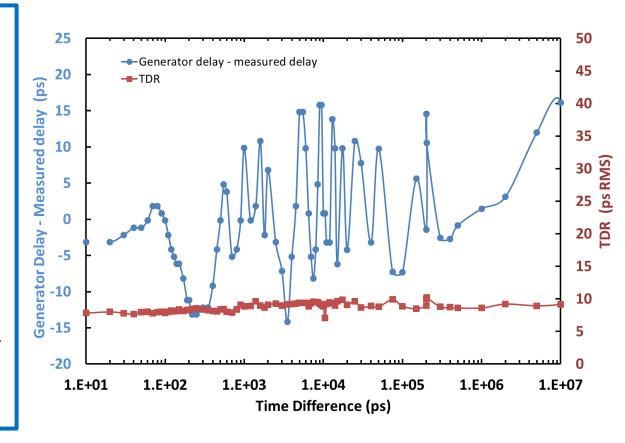
- TDR < 5 ps rms after time correction.
- TDR is constant for $\Delta t > 10$ ns
- unchanged when using 2 chips
 from 2 mezzanines (slope here
 comes from slower risetime of 800ps)
 - => measurement are uncorrelated
- => channel single pulse timing resolution is < 3.5 ps rms (5 ps/ $\sqrt{2}$) From these 2 types of measurements, we could extract the jitter from the motherboard clock source: \sim 2.2 ps rms => SAMPIC's own jitter < 2.5 ps rms

TIMING RESOLUTION (DIGITAL CFD) VS ADC NUMBER OF BITS


ADC conversion can be sped up (by decreasing the resolution): factor 2 for 10 bits (800 ns), 4 for 9 bits (400 ns), 8 for 8 bits (200 ns), 16 for 7 bits (100 ns).

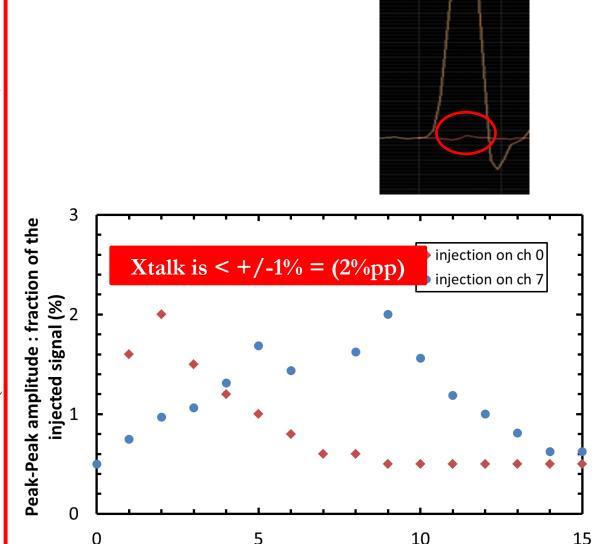
→ decrease of channel dead time

The quantization noise could affect the timing precision especially for small signals But QN= 400μVrms for 9bit mode negligible compared to SAMPIC noise = 950μVrms

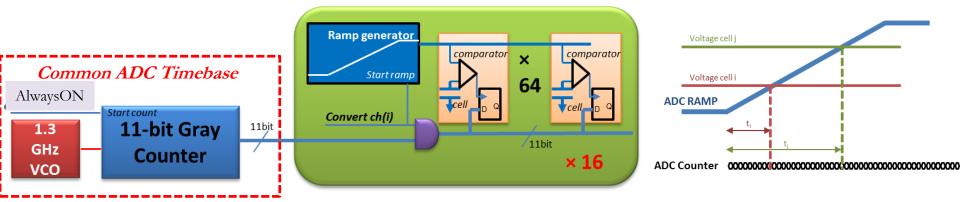

As expected no significative change measured for 11, 10 and 9-bit modes

No degradation on timing for pulses above 100mV for 8 bits

EXPLORING LARGER DELAYS: TOWARD AN « ABSOLUTE » TIME MEASUREMENT


- Now we use 2 channels of a TEK AFG 3252 arbitrary waveform generator and program their relative delay (10-ps steps)
- Slower than the previous generator (2.5ns risetime min)
- TEK AFG 3252 is specified for an absolute precision of few 10 ps delay and a 100ps jitter
- => Measurements are clearly MUCH MORE better

- TDR is < 10ps rms, even for delays up to 10 μs => 1-ppm RESOLUTION
- Difference between AFG programmed delay and measured value is < +/-15ps


SAMPIC_V0: XTALK MEASUREMENT

- 800mV, 1ns FWHM, 300ps risetime and falltime injected on **channel 7 (blue)**
- Signal measured on the other channels
- Xtalk = derivative and decrease as the distance to the injection channel
- Xtalk signal is bipolar with ~ equal positive and negative lobe
- Similar plot, but shifted if injection in another channel (red)

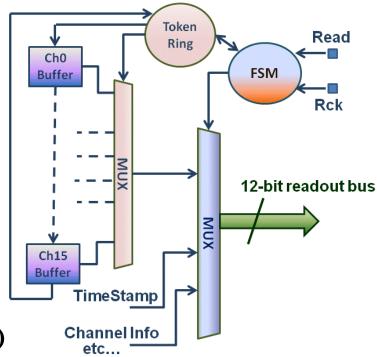
Channel Number

WILKINSON ADC WITH AUTO-CONVERSION MODE

- When triggered, each channel launches its auto-conversion.
 - When ramp starts, the value of the continuously running counter is sampled in a dedicated channel register
 - When the ramp crosses the cell voltage => the current value of the counter is stored in the cell register (ramp offset).
 - As soon as all discriminators of the channel have fired, Analog to Digital conversion of the channel is over => optimization of dead time
 - During readout, the ramp offset is read before the channel waveform samples.

In "auto-conversion" mode, the ramp offset will be subtracted from the value of the waveform samples.

READOUT PHILOSOPHY


- Readout driven by Read and Rck signals => controlled by FPGA
- Data is read channel by channel as soon it is available
- Rotating priority mechanism to avoid reading always the same channel at high rate

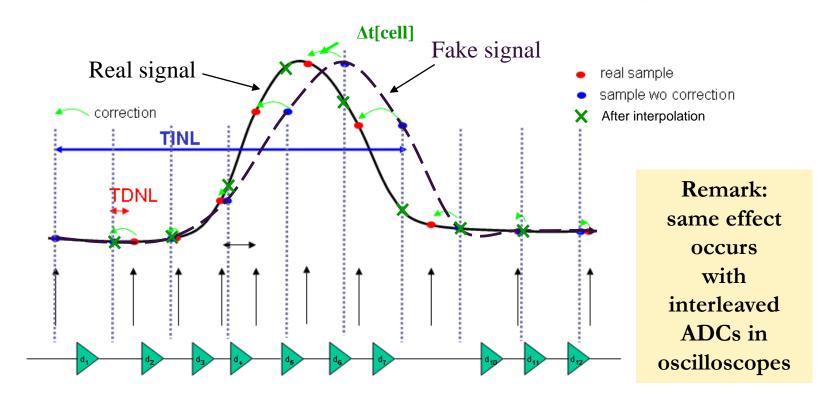
Optional Region Of Interest readout to reduce the dead time (nb of cells read

can be chosen dynamically)

• Readout of converted data through a 12-bit parallel LVDS bus including:

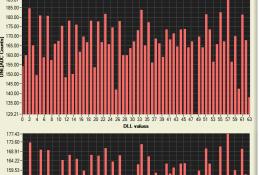
- Channel Identifier, Timestamps,
 Trigger Cell Index
- The cells (all or a selected set) of a given channel sent sequentially
- Standard readout at 2 Gbits/s
- => Rate > 2 Mevts/s (full waveform)
- Channel is not in deadtime during readout, only during conversion (data register is really a buffer stage)

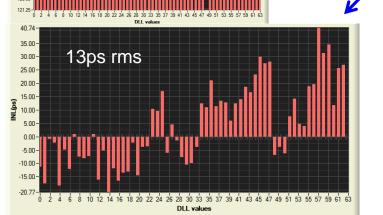
CALIBRATION PHILOSOPHY


- SCAs-based chips exhibit reproducible non-idealities which can be easily corrected after calibration:
 - The goal is to find the set with the **best performance/complexity ratio**.
 - But also to find the right set for the highest level of performance.
- SAMPIC actually offers very good performance with only two types of simple calibrations:
 - Amplitude: cell pedestal and gain (linear or parabolic fit) => DC ramp
 - Time: INL (one offset per cell) => use of a simple sinewave (see backup)
 - This leads to a limited volume of standard calibration data (4 to 6
 Bytes/cell/sampling frequency => 5 to 8 kBytes/chip/sampling frequency)
 => can be stored in the on-board EEPROM (1Mbit).
- These simple corrections could even be applied in the FPGA.
- Highest level calibrations permit debugging the chip and pushing the performance to its limit (still unknown).

TIMING NON-LINEARITIES


- Dispersion of single delays => time **DNL**
- Cumulative effect => time INL. Gets worse with delay line length.
- Systematic & fixed effect => non equidistant samples => Time Base Distortion


If we can measure it => we can correct it!

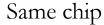

But calibration and even more correction have to remain "simple".

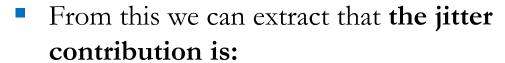
TIME INL CALIBRATION AND CORRECTION

Method we introduced in 2009 and used since for our analog memories, assuming that a sinewave is nearly linear in its zero crossing region: much more precise than statistical distribution

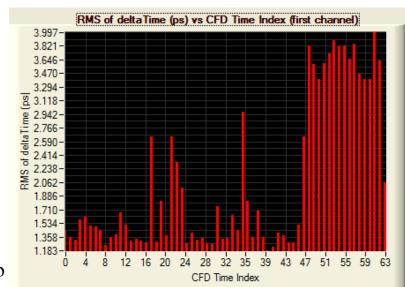
• Search of zero-crossing segments of a free running asynchronous sine wave

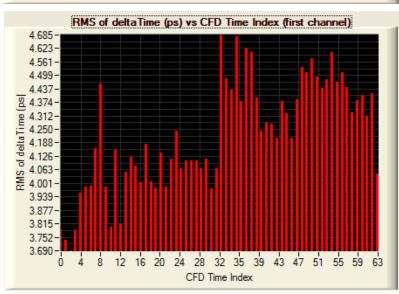
=> length[position]

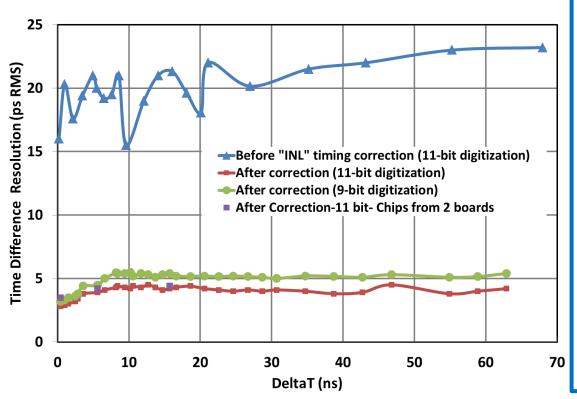

- Calculate the average amplitude for zero-crossing segment for each cell.
- Renormalize (divide by average amplitude for all the cells and multiply by the clock period/number of DLL steps)
 - => time duration for each step = "time DNL"
- Integrate this plot:
 - ⇒ Fixed Pattern Jitter = correction to apply to the time of each sample = "time INL"

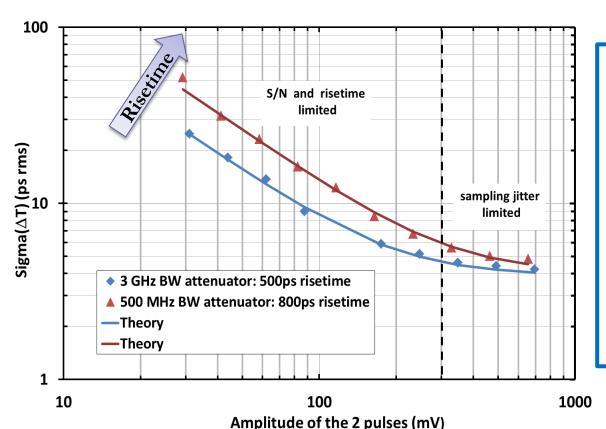

Time INL correction:

- \bullet Simple addition on T_{sample}
- Also permits the calculation of real equidistant samples by interpolation or digital filtering.


TRICKS FOR UNDERSTANDING RESOLUTION


- This is how we measure the contributions to the resolution: we run at 6.4 GS/s, send two 500 mV pulses separated by 2.5 ns to two channels:
 - 1. of the same mezzanine
 - 2. of two different mezzanines


- ~ 1.5 ps rms from the DLL
- ~ 1.8 ps rms from the clock distribution on the motherboard
- ~ 2.4 ps rms from the clock distribution on the mezzanine


ΔT RESOLUTION VS DELAY

- TDR < 25 ps RMS before time cor.
- TDR < 5 ps RMS after time cor.
- TDR is constant after $\Delta T = 10$ ns
- Unchanged for 2 chips from 2 different mezzanines (same clk source but different DLLs and onchip clock path)
- => Channel single pulse timing resolution is < 3.5 ps RMS (5 ps/ $\sqrt{2}$)
- For these large pulses TDR is worst by only 1ps RMS in 9-bit mode (digitization time divided by 4)

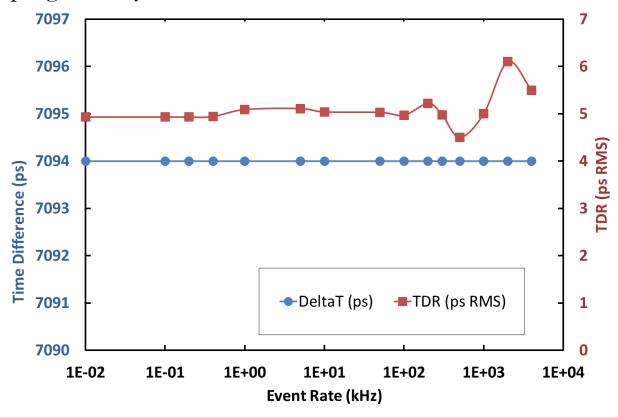
TIMING RESOLUTION VS AMPLITUDE & RISETIME 1-NS FWHM - 15 NS DELAY, DIGITAL CFD ALGORITHM

Measurements consistent with the theoretical formula:

$$\sigma(\Delta t) = \sqrt{2} \times \sqrt{\sigma_j^2 + \alpha \times \left(\frac{\sigma_n}{Slope}\right)^2}$$

Assuming::

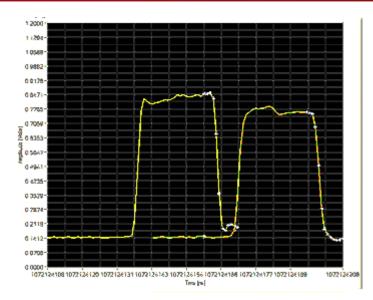
- * Voltage noise $\sigma_n = 1.1 \text{ mV RMS}$
- * Sampling jitter $\sigma_i = 2.8 \text{ ps RMS}$
 - * $\alpha = 2/3$ (theory for perfect CFD)

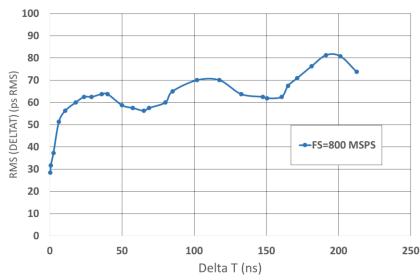

arXiv:1606.05541v1

- 2 zones: sampling jitter or S/N limited zones.
- TDR < 8 ps rms for pulse amplitudes > 100mV
- TDR < 20 ps rms for pulse amplitudes > 40 mV
- Can be improved by using mores samples (if feasible and uncorrelated) since dCFD uses only 2 samples

TIMING RESOLUTION VS RATE

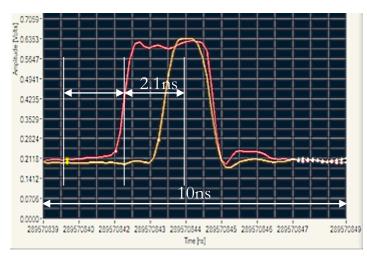
1ns FWHM, 400ps risetime, 0.7V signals sent to 2 channels of SAMPIC

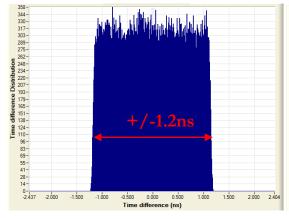

- 7.1ns delay by cable, 6.4 GS/s, 11-bit mode, 64 samples, both INLs corrected
- Rate is progressively increased.



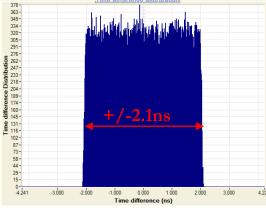
The measured delay and its resolution are stable for channel rates up to 2 MHz

NEW in SAMPIC V3: 800 MS/s mode


- Was not possible in the previous SAMPIC versions
- The 64 cells cover a 80 ns window with
 1.25 ns steps
- Tested here with an external clock with unknown jitter + cables that degrades the slopes for larger delays
- < 40ps RMS resolution for a single signal</p>
- Could be usefull for applications with slower detectors (semiconductors, moderate-speed light detector)

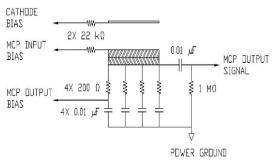

CENTRAL TRIGGER/ COINCIDENCE

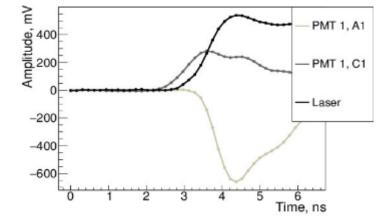
- Each channel can be triggered by the CENTRAL TRIGGER: can be the OR, or a
 Coincidence of ≥ 2 or ≥ 3 channels
- Coincidence Gate generated by an asynchronous delay as previously described.
- Only 1ns of extra latency on trigger decision
- Test below using 2 signals (>> 1MHz) with random phases sent to 2 channels with 1.2 or 2.1ns coincidence gate.



1 of the couples of signals digitized. 2.1 ns gate @ 6.4 GSPS

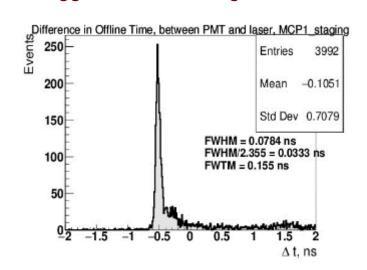
TimeDifference histogram (from the digitized waveform)


« 1.2ns » coincidence gate



« 2.1ns » coincidence gate

SCAN TEST OF MCP-PMT



- PLANACON XP85012 used for CALIPSO/PECHE
- 53 mm x 53 mm, 64 anodes → 16 channels (groups of 4 anodes)
- Rise time 0.6 ns, pulse width 1.8 ns
- Use pulsed laser PILAS in the single-photon mode
- Beam duration 20ps collimated by a pin-hole with a diameter 0.4 mm
- Use automatic XZ staging station Zaber.
- Step size 1 mm , Precision ~10 μm
- SAMPIC in two-level trigger coincidence mode (anode & laser)
- Data taking: rate of ~50 kHz
- 2 sec / per stage, 0.5 sec / move
- Total scan time ~2 hours

Difference in time between laser trigger and anode signal

© S. Sharyy

NIM PAPERS RECENTLY PUBLISHED

Nuclear Instruments and Methods in Physics Research A 835 (2016) 51-60

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

CrossMark

Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment

Volume 877, 1 January 2018, Pages 9-15

Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC waveform digitizer

D. Breton ^a, V. De Cacqueray ^{b,1}, E. Delagnes ^b, H. Grabas ^c, J. Maalmi ^a, N. Minafra ^{d,e,2}, C. Royon ^f, M. Saimpert ^{b,*}

- * CNRS/IN2P3/LAL Orsay, Université Paris-Saday, F-91898 Orsay, France
- b IRRJ, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Santa Cruz Institute for Particle Physics UC Santa Cruz, CA 95064, USA
- ^d Dipartimento Interateneo di Fisica di Bari, Bari, Italy
- " CERN. Geneva. Switzerland
- University of Kansas, Lawrence, USA

ARTICLE INFO

Article history:
Received 8 April 2016
Received in revised form
1 August 2016
Accepted 7 August 2016
Available online 10 August 2016

Keywords: ASIC Time-of-flight Time to digital converter Waveform sampling Time resolution Silicon detector

ABSTRACT

The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA, IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to improve time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using pulses generated by a signal generator or by a silicon detector illuminated by a pulsed infrared laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 ps with synthesized signals and 40 ps with silicon detector signals.

© 2016 Elsevier B,V, All rights reserved,

Study of timing characteristics of a 3 m long plastic scintillator counter using waveform digitizers

A. Blondel ^a, D. Breton ^b, A. Dubreuil ^a, A. Khotyantsev ^c, A. Korzenev ^a $\stackrel{\triangle}{\sim} \boxtimes$, J. Maalmi ^b, A. Mefodev ^c, P. Mermod ^a $\stackrel{\triangle}{\sim} \boxtimes$, E. Noah ^a

⊞ Show more

https://doi.org/10.1016/j.nima.2017.09.018

Get rights and content

Abstract

A plastic scintillator bar with dimensions $300~\rm cm \times 2.5~\rm cm \times 11~cm$ was exposed to a focused muon beam to study its light yield and timing characteristics as a function of position and angle of incidence. The scintillating light was read out at both ends by photomultiplier tubes whose pulse shapes were recorded by waveform digitizers. Results obtained with the WAVECATCHER and SAMPIC digitizers are analyzed and compared. A discussion of the various factors affecting the timing resolution is presented. Prospects for applications of plastic scintillator technology in large-scale particle physics detectors with timing resolution around $100~\rm ps$ are provided in light of the results.

http://arxiv.org/abs/1604.02385

http://arxiv.org/abs/1610.05667