D. BAZIN
NATIONAL SUPERCONDUCTING CYCLOTRON LABORATORY
FACILITY FOR RARE ISOTOPE BEAMS
MICHIGAN STATE UNIVERSITY

PRESENT AND FUTURE OF THE GET SYSTEM AT NSCL/FRIB

THE AT-TPC AT NSCL

- Cylindrical volume
 - 250 liters (1 m long by 55 cm wide)
 - Oriented on beam axis
 - Electrons produced in gas drift towards sensor plane parallel to beam direction
 - Surrounding volume filled with insulator gas such as N₂

THE AT-TPC AT NSCL

- Cylindrical volume
 - 250 liters (1 m long by 55 cm wide)
 - Oriented on beam axis
 - Electrons produced in gas drift towards sensor plane parallel to beam direction
 - Surrounding volume filled with insulator gas such as N₂

THE AT-TPC AT NSCL

- Cylindrical volume
 - 250 liters (1 m long by
 55 cm wide)
 - Oriented on beam axis
 - Electrons produced in gas drift towards sensor plane parallel to beam direction
 - Surrounding volume filled with insulator gas such as N₂

SENSOR PLANE & ELECTRONICS

- Mosaic composed of 10,240
 triangular pads
 - Smaller size triangle region in center to increase granularity
 - Pad sizes of 0.5 and 1 cm
- Front-end electronics
 - Directly mounted on the back of sensor plane to avoid cables and minimize capacitive noise

AT-TPC DEVICE

- AT-TPC detector placed inside large bore MRI solenoid
 - Curve trajectories of scattered particles
 - Increase their trajectory length and measure their range
 - Measure their magnetic rigidity
 - Tilt AT-TPC volume by up to 7°
 - Spread image of beam tracks over larger number of pads

A FEW PICTURES...

GET ELECTRONICS AND THE AT-TPC

- The special features of the GET electronics are essential to the AT-TPC
 - Only ancillary detectors are Ion Chamber or MCP upstream of AT-TPC
 - No ancillary detector to be used as trigger source
 - AT-TPC has to rely on internal (self) trigger generated from its pad plane
- Trigger generation of the AT-TPC
 - Define beam exclusion region corresponding to pads hit by beam tracks
 - Generate signal for multiplicities larger than a threshold outside exclusion region
 - Set trigger timing to entrance window using upstream beam detector

ELECTRONICS SETUP

THE MULTIPLICITY BASELINE ISSUE

- Multiplicity sliding window
 - Must be long enough to cover maximum electron drift time
 - Running average subtracted to multiplicity to remove baseline
 - Problem: running average follows slowly rising multiplicity more than fast rising
 - Tracks with small scattering angle are more suppressed from triggering
 - Solution: use fixed baseline subtraction

MULTIPLICITY TRIGGER TEST

- Fixed baseline determination
 - Different for each AGET chip
 - Can be calibrated from data frame header information
 - New firmware parameters set to baseline plus fixed threshold
- Test using alpha source in AT-TPC
 - Source place on high voltage cathode
 - Red: track start, green: track stop

MULTIPLICITY TRIGGER TEST

- Alpha tracks analysis
 - Polar angle limited to <40°
 due to source collimator
 - Length distribution shows peak at range of alphas
- Trigger threshold analysis
 - Global multiplicity threshold on MuTanT
 - Minimum at around 350
 - Clear cut of small polar angles with rising threshold

CLOCK PROBLEMS...

- Green histograms show timing between 2 channels from the same CoBo: good resolution
- Red histograms show timing between 2 channels from different CoBos: resolution lost
- Bad timing histograms follow triangular distributions expected from 2 independent clocks
- Explanation: Mutant clock frequency outside working range of CoBo PLL circuit

CLOCK PROBLEMS...

- Fix: add parameter to set frequency of Mutant GMC clock within range of CoBo PLL
- VCXO parameter at 0x50: one peak identical to same CoBo peak
- VCXO parameter at 0x80: two peaks separated by period (20 ns)
- Effect of CKW flip on AsAd2+3?

DYNAMIC RANGE ISSUE

- Rate and energy loss of beam particles
 - Much higher and larger than scattered recoils
 - Even with lowest gain (10 pC) beam region preamplifiers saturate
 - Large amount of electrons in multiplication device (Micromegas) induce significant current and fluctuations of high voltage
 - Large number of positive ions can distort electric field and suppress primary electrons

HOLE IN THE BEAM!

- Elastic scattering of ⁴⁶K in P10 (Ar+CH₄) gas
- Upper figure shows scattering event at low beam intensity (10-100 pps)
- Lower figure shows similar event at rate
 1,000-10,000 pps (instantaneous)
- Primary electrons from beam ionization recombine with large amount of positive ions drifting in opposite direction
- Positive ions distort electric field in beam region

INDIVIDUAL PAD POLARIZATION

- Micromegas avalanches are localized
 - Very small gap (100 μm)
 - Gain depends on field gradient between each pad and the mesh

 Varying the potential on a given pad changes the gain for that pad only

- Implementation
 - Protection circuit of electronics equipped with jumpers (256 pads) ...
 - ... or programmable HV switch (10,000 pads!)

TEST USING ALPHA SOURCE

- Alphas emitted from sputtered
 ²⁴⁸Cm on walls of field cage from
 fission source
- Micromegas polarized at -300V
 - Orange region: +40V (lower gain)
 - Blue region: -40V (higher gain)
 - Green region: 0V
- All channels have the same electronics gain

REAL EXPERIMENT: 22MG(ALPHA, P)

- Central region (orange)
 - Polarized at +100V
 - Lowest electronics gain (10 pC)
- Only blue region equipped with individual pad polarization
- Kill two birds with one stone
 - Avoid saturation of beam pads and their electronics channels
 - Avoid loss of primary electrons from beam tracks

BEAM EVENT

- ²²Mg beam stops in gas
 - Range ~ 50 cm
 - Only 7 pads registered a hit
- Signals in beam region
 - No saturation of preamplifiers
 - Slight undershoot due to shape of signal and transfer function of shaper
 - Bragg profile of ²²Mg measured

$22Mg(\alpha,\alpha)$

22 Mg(α ,2p)

GALLERY

22 Mg(α , α 2p)

$22Mg(\alpha,?)$

WHAT WE WERE LOOKING FOR...

Low energy $^{22}Mg(\alpha,p)$

COBO FIRMWARE ISSUES

- Source of most issues: resources of FPGA close to full utilization
 - Timing constrains difficult to meet: hit or miss behavior
 - CoBo has many clock domains to reconcile
 - Mutant-less firmware has no issues
- Symptoms of main issues
 - Bad AGET programming: some AGET registers are not correctly initialized
 - Bit flip: delay compensation between AsAd and CoBo not well optimized
 - CoBo stuck during Prepare phase

Device Utilization Summary:		
Number of PLL_ADVs	2 out of 6	33%
Number of PPC440s	2 out of 2	100%
Number of RAMB18X2s	35 out of 228	15%
Number of RAMB18X2SDPs	18 out of 228	7%
Number of RAMB36SDP_EXPs	10 out of 228	4%
Number of RAMB36_EXPs	69 out of 228	30%
Number of TEMACs	1 out of 2	50%
Number of Slices	14124 out of 16000	88%
Number of Slice Registers	34535 out of 64000	53%

METHOD FOR BYPASSING ISSUES

- Present method to "fix" issues during experiment
 - Program all channels using "Prepare" and "Configure" phases
 - Identify CoBo/AsAd/AGET with issues taking pulser or baseline data
 - Reprogram ONLY the "bad" CoBo/AsAd/AGET using GetController
 - Check that data is good and do not touch any parameter before running
- Smarter slow control interface proposal
 - If p is probability of programming success for one CoBo, it becomes pⁿ for n CoBos
 - Slow control interface could identify changed parameters from current and only reprogram CoBo/AsAd/AGET that need to be

DIFFICULTIES FIXING FIRMWARE

- Xilinx doesn't help!
 - Virtex 5 not supported by latest software suite (Vivado)
 - Software used for Virtex 5 (ISE) no longer supported
 - Latest version of ISE not ported to Windows 10 (only for Spartan 6)
- Lengthy process
 - Both engineers who developed CoBo no longer work at NSCL
 - Recompiling firmware takes ~ 1 hour (on a good machine)
 - "Noodle syndrome": modifying one part can break another

FUTURE OF GET AT NSCL/FRIB

- Ideal electronics for drift chambers or multi-channel tracking detectors
 - Upgrade of CRDC (Cathode Readout Drift Chamber) of S800
 - Possible electronics for Optical PPAC using SiPM
 - See talk by M. Cortesi
 - Planned use for proton detector (see talk by M. Friedman)
- Integration of GET readout in NSCL DAQ system
 - Ongoing work by R. Fox and G. Cerizza
 - External triggering (no Mutant) but need for time stamp/clock synchronization

CONCLUSION

- GET is great!
 - Without the GET electronics, AT-TPC experiments would not be possible
 - Internal trigger based on live multiplicity is essential to AT-TPC
 - Quality of data competitive with flash ADC technology at fraction of cost
- The future of GET
 - Solving the remaining issues with CoBo firmware is desirable
 - Alternative to Reduced-CoBo for smaller Mutant-free systems
 - More discussions during this meeting...