Si-GET Project in HKU

Pengjie Li, Sidong Chen, Xinxing Xu, Jenny Lee, Sylvain Leblond The University of Hong Kong

Oct. 10, 2018

- > Motivation
- > Si-GET Test Bench @HKU
 - TTT4 Summary spectrum
 - Energy Spectrum
 - · Coincidence between front, rear strips
 - Coincidence between adjacent strips
 - Map reconstruction
- > Commissioning run @HIRFL in Lanzhou
- > Summary

HKU Direct Reaction (Transfer & Knock-out) experiments

- Reaction Dynamics 34,36 Ar (p,d) at 70 MeV/u @ MSU (2014)
- Nucleon Correlation ¹⁴O(¹²C, X)¹³O, ¹³N at 60 MeV/u @ RCNP (2015)
- α clustering ^{10,12,14}Be($p, p\alpha$) at 150 MeV/u @ RIKEN (2018)

DSSD: BB7 type, 32X32 strip, strip width 2mm

Direct Reaction with RI Beam

- Inverse kinematics
- Low beam intensity

Request for Detector Array

- High Angular resolution
- Large angle coverage

Telescopes X 8 : DSSD+CsI

DSSD Upgrade:

Micron Semiconductor TTT series

- Number of Strips:128X128
- Active Area: 100X100mm²
- Strip Width: 760(60) um

Total 2080 channels readout electronics

GET Hardware demand

- AsAd Board X 9
- Cobo X3
- Mutant X1
- MCH X 1
- Micro TCA Crate X1

HKU decay experiment

βp , $\beta 2p$, $\beta p\alpha$ measurement

• β decay spectroscopy of ²⁶P, ²²Al at IMP, Lanzhou (2017)

Center implantation detector

• 1 DSSD (40 μ m) with a dip angle of 45°(30°)

Surrounding detectors

• 6 DSSD with 60, 300,500 μm + QSDs

DSSD Upgrade

- 1. Better position determination for the implantation
- 2. Better angular resolution for the decayed particles

DSSD Type	BB7	TTT Series
Channels	260	1828

GET Hardware demand

- AsAd Board X 8
- Cobo X2
- Mutant X1
- MCH X 1
- Micro TCA Crate X1

Why do we need GET System for Silicon

Silicon Array Detection System

- -- Radioactive Nuclei far from stability
 - Large angle coverage
 - high granularity

Conventional Electronics –TTT4

- 16 ch Preamplifier X16
- 16 ch Amplifier X16
- 16 ch Discriminator X16
- 32 ch ADC X8
- Crates, racks, cables ...

128 ch Leading edge discriminator

High granularity DSSD in HKU

Number of Strips: 128X128 Strip Width: 760(60) um

DSSD in Total

- 8 X TTT Series DSSDs
- 2048 channels readout electronic

Why do we need GET System for Silicon

Silicon Array Detection System

- -- Radioactive Nuclei far from stability
 - Large angle coverage
 - high granularity

GET System – TTT4

Signal Inputs (4x64)

Inspection VHDCI to CoBo Power Supply
From E.C. Pollacco, et al, NIM Phys. Res. A 887(2018) 81

High granularity DSSD in HKU

Number of Strips: 128X128 Strip Width: 760(60) um

DSSD in Total

- 8 X TTT Series DSSDs
- 2048 channels readout electronic

All front end electronics included in AsAd Board

Performance Test of Si+GET @HKU

- Noise level with silicon detectors
- Energy Resolution compared to conventional electronics
- Performance consistency between channels

Si-GET Test Bench @HKU

Si-GET Test Bench @HKU

Triple source components

Nuclides	Energy (keV)	Intensities (%)
239 Pu	5105.5(8)	11.94(7)
	5144.3(8)	17.11(14)
	5156.59(14)	70.77(14)
241Am	5442.80(13)	13.1(3)
	5485.56(12)	84.8(5)
244Cm	5762.64(3)	23.10(10)
	5804.77(5)	76.90(10)

Mask used for checking readout mapping

ZAP design

Schematic diagram for ZAP For TPC from ZAP essential.pdf

Data Analysis

FPN correction

$$s_{FPN}[k] = s_{sig}[k] - FPN[k]$$

Baseline subtraction

$$s_{cor}[k] = s_{FPN}[k]$$
 - Average_Baseline

From J. Giovinazzo, et al, NIM Phys. Res. A 840 (2016) 15

Summary spectrum for TTT4

• Channels without full spectrum are strips located at the edge of DSSD and alpha particles are blocked by mapping mask.

Energy Spectrum from one strip

Energy Spectrum from one strip

• Signals from third peak are saturated under the condition of gain @240fC

Coincidence between front and rear strips

Coincidence between adjacent strips

HKU Map used to check strips mapping

China Map used to check strips mapping

Summary Summary

- 1) Successfully apply GET system to DSSD readout, using 2 Cobo and multiple AsAd boards with Narval DAQ
- 2) Energy resolution (FWHM) for Alpha @5.15 MeV
 - Better than 1% at Gain 1pC
 - $\sim 0.65\%$ at Gain 240 fC
 - Better than conventional electronics in general
- 3) Coincidence between strips from front to rear side or adjacent strips is checked
- 4) Mapping is checked by putting mask in front of DSSD

Future Plans

- CsI(Tl) detector test with GET system
- Commissioning run @HIRFL, Lanzhou, China in 2019
- Construction of full setup of Si-CsI Array with GET at HKU (expected in Fall 2019)

Commissioning run @HIRFL in Lanzhou

Heavy Ion Research Facility in Lanzhou (HIRFL)

Commissioning run @HIRFL in Lanzhou

⁶He + ¹²C scattering @ 30 MeV/u

- Breakup experiment in 2019
- Physics goal is study 4 body effect
- Angular distribution of the elastic cross section will be measured
- Beam time ~ 2days
- Beam intensity 10⁴ pps in Lanzhou

Telescope readout electronics

GET system

Commissioning run @HIRFL in Lanzhou

Si+GET test in experiment

- Stability during experiment
- Noise environment influence compared to lab test
- Energy Resolution compared to conventional electronics
- Trigger condition, limit of counting rate
- DAQ Test, integrated with other DAQ system

Big Thanks

GET Team collaboration for great support and discussions

J.L Pedroza, J. Pibernat and G. Wittwer for visiting HKU lab and great help for the setup of Si+GET test bench

T. Isobe-san for the visit of HKU and great help on the setup of DAQ and many other things.

Thank you for your attention