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Outline

1) Basic concepts and selected advanced ideas
● What is machine learning?
● Techniques: Classification, regression…
● Models, software and tools

2) Applications in
 high-energy physics
● Focus on heavy-ion 

physics

3) Example – How to start
 a ML-assisted analysis?
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Take part

● Forum for machine learning community at CERN
● Focus on LHC – but everybody welcome!
● We organize monthly meetings, annual huge workshop
● Interface between experiments on ML

Each LHC experiment is represented by an IML coordinator
● Contact point for everything ML-related, from software to hardware

● Connects to data science community
● Foster common solutions
● Provides training and benchmarks

Inter-Experimental LHC
Machine Learning Working Group
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Take part

Get in touch:
● Drop us a mail: iml.coordinators@cern.ch
● Subscribe to CERN egroup: lhc-machinelearning-wg@cern.ch
● No need to have a full CERN account → lightweight account
● Further information: http://iml.web.cern.ch/

For ALICE:
● Group dedicated to machine learning: 

alice-machine-learning@cern.ch

Inter-Experimental LHC
Machine Learning Working Group

mailto:iml.coordinators@cern.ch
mailto:lhc-machinelearning-wg@cern.ch
http://iml.web.cern.ch/
mailto:alice-machine-learning@cern.ch


  

Concepts of machine learning
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Motivation

https://www.youtube.com/watch?v=aFuA50H9uek
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Motivation

We want to use Machine Learning techniques to
●  solve a problem by learning from examples,
●  and to be robust against obstacles.
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Motivation

Amazing progress in the last years!
Partly reached ‘superhuman’ abilities

Interest rising in
physics (and industry)
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Introduction

What is Machine Learning?
● Wide field with increasing applications in research and industry
● First ideas already since 1950’s
● Machine Learning not new to physics
● In HEP, many ‘classic’ ML methods are already in use.

● Boosted decision trees (BDTs) in Higgs search
● In ALICE, e.g. BDTs for signal extraction for charmed baryons

● Relatively new: Deep learning in physics
→ Huge progress done in last years
→ More and more analyses upcoming in all experiments

Development of Machine Learning techniques is incredibly fast
● A lot of progress from tech companies and industry
● Boost from big data, most progress in deep learning
● Many advanced solutions for “human problems” (e.g. image 

recognition, text understanding) can also be adapted to HEP 
problems!
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Introduction

Important: Machine Learning is not the 
solution for all our problems
● Usually, one cannot just throw in data 

and expect the algorithm to perform 
better than human even in a
well-defined task
● ML no replacement for domain knowledge
● “Garbage in → Garbage out”
● Still: algorithms, classifiers, and training 

data need to be selected carefully
● Also interesting:

Deep learning is not necessarily better 
than classic ML methods

xkcd.com
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Introduction

Basic ansatz of ML algorithms:
The algorithm improves its own performance on a task by gaining 
more experience

● In the simplest cases, these are more involved fitting algorithms
● More complex cases include ensembles of several methods including 

huge neural networks

In a simplified view, one can divide two types of algorithms:

● Supervised learning algorithms need labeled training data 
and learn the correct mapping of input data and desired output

● Unsupervised learning tries to find a structure in the data 
without a priori knowledge of desired outcome
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Supervised learning

Supervised learning helps with either
classification or regression tasks

Classification: Group samples into predefined classes
Tagging b-jets, classifying neutrino candidates, classify photos of cats 
& dogs, etc.

Regression: Assign value to each sample
Calculate jet-underlying background in Pb-Pb, predict estate worth 
depending on location & properties

General approach:
● Give training dataset to model where truth is known (labeled data)
● Model is optimized according to a loss function to produce the correct 

output. In a neural network: Weights are adapted
● Idea: Model learns general features and gives correct output for 

unknown samples
● Output can be a class (e.g. b-jet or not) or a value (e.g. background)
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Supervised learning

● Important: Performance of the model must 
not be evaluated on the training dataset

● Model “has seen” training data and could 
have learned dataset-specific features

● This won’t help on general data
● This is called overfitting and can happen e.g. 

for too complex models
Here the model works amazingly well on the 
training data, but fails on other data

Solution: Strictly split training, validation, and testing data
● Training data: Used only for training, exclusively
● Validation data: Used for performance evaluation during training
● Testing data: Dataset used for “real physics”

Green line = overfitting
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Supervised learning

Crucial: Labeled training samples need to be as accurate as possible
● Classes must be well-defined
● Regression parameters must be precisely known
● Train with garbage = Find garbage
● Usually this means we need a good Monte Carlo description
● There are techniques to improve the MC to better fit the data

Good idea might always be:
● Define a model that is as general as possible, not taking into account 

details which are in fact no general features
● Do not use features poorly described in MC
● Adjust number of training samples to model complexity, e.g. for 

neural network:
O(samples) = O(free parameters)
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Unsupervised learning

Unsupervised learning works on unlabeled data

Applications: Find structures in data
● Data clustering
● Represent data with reduced dimensionality

● Also: Generative adversarial network (later)

Example for clustering in 2-parameter space:

● Ambiguous task, performance strongly depends on problem
● Not so many applications yet – but one very well known in HEP
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Neural networks

A lot of models available: Optimum model depends on task!
● Here focus on neural networks → allow shallow & deep learning
● Neural networks = Loosely inspired by biological neural networks
● Connected systems of nodes

● Several inputs
● Activation function that weights inputs
● Triggers output according to weights

Input OutputHidden

Neural network:

Neuron:

● Multiple neuron layers, chain of tensor 
operations

● Multidim. input →multidim. output
● Massively parallelized→use GPUs



  

Rüdiger Haake 18Introduction to Machine Learning

Neural networks

A lot of models available: Optimum model depends on task!
● Here focus on neural networks → allow shallow & deep learning
● Neural networks = Loosely inspired by biological neural networks
● Connected systems of nodes

Network of networks:
Neural networks allow to combine useful networks 
→Powerful ansatz!

Global event properties:
Multiplicity, mean background,
centrality, vertex z, ...

Per-jet properties:
Jet mass, N-subjettiness,
radial moment, other shapes...

Low-level per-jet properties:
Constituent momenta, η, φ, ...

● Train several 
networks

● Inputs can be 
very different!

Output

Output

Output
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Neural networks

A lot of models available: Optimum model depends on task!
● Here focus on neural networks → allow shallow & deep learning
● Neural networks = Loosely inspired by biological neural networks
● Connected systems of nodes

Network of networks:
Neural networks allow to combine useful networks 
→Powerful ansatz!

Global event properties:
Multiplicity, mean background,
centrality, vertex z, ...

Per-jet properties:
Jet mass, N-subjettiness,
radial moment, other shapes...

Low-level per-jet properties:
Constituent momenta, η, φ, ...

● Train several 
networks

● Inputs can be 
very different!

Network

Combine 
output with 
further NN

Output
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Software and frameworks

No need to write everything from scratch: Open frameworks exist
Huge data science community → large knowledge base!

Keras:
● Fast-growing easy-to-use Python lib
● Allows application of deep-learning models (CNNs, LSTMs, …)
● Tensorflow, Theano backends → GPU support

Scikit-learn:
● Python lib that implements many (non-deep) techniques
● A lot of data preprocessing & statistics tools:

TMVA:
● Implemented in ROOT
● Pro: Allows direct integration in HEP codebase
● Has many (non-deep) ML techniques implemented
● Interface to Keras (deep neural networks) in development

Clear advantage of data analysis with Python: Very quickly set up
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A few words on hardware

● Depending on task, many ML-analyses can be done on laptop
● But: Deep neural networks usually need additional computation power

● Large data samples (O(100k))
● Huge amount of free parameters (O(100k))

● University/lab GPU farms: Good solution for long-term training jobs
In the next months, CERN might also come up with a GPU farm

● For testing and medium scale analysis: Local GPUs

Example:
● I use an NVIDIA GTX 970 Ti for my 

analyses (few hundred Euros)
● Several orders of magnitude faster 

than CPU-only
● Make sure GPU is supported by ML-

backend of choice!



  

Applications in high energy physics:
Particle jets
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Jets: Machine learning applications

Depending on the problem, jets can serve as input to
● shallow learning algorithms (e.g. BDTs)
● deep learning (neural networks)

Global event properties:
Multiplicity, mean background,
centrality, vertex z, ...

Per-jet properties:
Jet mass, N-subjettiness,
radial moment, other shapes...

Low-level per-jet properties:
Constituent momenta, η, φ, ...

Other low-level properties:
Reconstructed secondary
vertices, ...

High-level 
parameters

Low-level 
parameters

● Features need to have discrimination power on problem
● Need good MC description of features
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Jets: Machine learning applications

Typical applications for jets

Jet tagging/classification
● q/g-jet tagging
● b/c-jet tagging
● W-jets vs. QCD jets
● Multiclass jet classification

Regression of jet parameters
● Background in heavy-ion jets
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Jets: Jet images

● Motivation: Huge progress with convolutional neural networks 
in image recognition/classification

● Classify jets according to their pattern they leave in detector
… in calorimeter cells
… as charged particle tracks

● In 1407.5675, jet images are used for W-jet tagging

Preprocessing

Average jet image
before preprocessing

Average jet image
after preprocessing

Discrimination
between the

two populations

● Several approaches on jet images: CNNs, Locally-connected 
networks…

● Works, but have in mind: “Jets are no cats”
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Jets: Jet images

● Motivation: Huge progress with convolutional neural networks 
in image recognition/classification

● Classify jets according to their pattern they leave in detector
… in calorimeter cells
… as charged particle tracks

● In 1407.5675, jet images are used for W-jet tagging

● Several approaches on jet images: CNNs, Locally-connected 
networks…

● Works, but have in mind: “Jets are no cats”

Might also work for
QCD jet classification
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Jets: Recurrent/recursive approaches

● Jet images exploit analogy to image classification
● What about analogy to speech recognition?
● Exploit:

Sentence = sequence of words
Jet = sequence of constituents

● Good analogies are useful: We can build on progress in 
computer science

● A lot of research on text classification/understanding

● Like for text classification, recurrent networks promising
● Interesting in this context:

Recursive networks whose topology changes event-by-event 
depending on jet finder combination history (1702.00748)
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Jets: Background approximation

● In heavy-ion collisions, jets strongly affected by background
→ We are interested in the hard jet process
→ But jet is overlapped by many soft processes which are not 

correlated to jet
● Ideal example for regression task: Approximation of background

Old ansatz:
● Calculate background event-by-event

and subtract from each jet
● Correct for fluctuations in unfolding

New idea:
● Approximate background jet-by-jet 

using ML methods
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Jets: Background approximation

● In contrast to jet constituents, background is uncorrelated from jet
→ Neural network might be able to estimate background

● Major concern is the need for good training data
● Here, this means jets & background must be realistic:

● Monte Carlo jets from PYTHIA (real physics)
● Background from toy, parameters taken from real data

● Might eventually allow 
measurement of jets at 
lower transverse 
momentum

● First results promising 
with simple neural 
networks

ML-background
much more realistic



  

Applications in high energy physics:
Particle identification
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PID: Motivation

● In tracking, usually transverse momenta measured
● Particle identification needs further measurement
● Information on particle species often important for physics 

analysis:
● Production of pions, kaons, protons and their modification in 

heavy-ion collisions
● Heavy-flavor physics (D, B-mesons, b-jets)
● Neutron pion production
● Photon production
● Particle composition in jets
● …

ALICE uses a variety of different detectors to gain 
complementary information on particles
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PID: Electron identification

● Example for electron identification
● MVA approach:

Use Boosted Decision Tree (BDT) on nσ values, track properties

No cut PID cut MVA cut

nσ distribution for electrons TPC
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PID: General identification task

Ultimate goal: General particle identification which exploits all 
available information

Stage 1: Classifier works on cleaned, calibrated distributions, 
 e.g. on nσ values

Stage 2: Classifier works on raw PID detector distributions

Both cases would be very helpful to raise efficiency and purity

Crucial point: Monte Carlo productions
● Training data needs to be as precise as possible
● Monte Carlos often show a poor PID agreement, at least for some 

particle species



  

Applications in high energy physics:
Fast simulation



  

Rüdiger Haake 35Introduction to Machine Learning

Fast simulation: GANs

● Simulation of expected physics in detector crucial for interpretation
● Usually: Monte Carlo simulation

1)  Event generation on particle level (e.g. PYTHIA)
2)  Reconstruction on detector level (e.g. GEANT)

● Both steps can be 
computationally expensive, 
especially for heavy-ion collisions

● Currently, huge amount of 
computing resources (~50%) 
used for simulations

● Computational costs for LHC run 
3 and HL-LHC much worse:

Higher statistics in data
→ need higher MC statistics!
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Fast simulation: GANs

● General approach: Use fast simulation
Ex.: Mix fully-reconstructed with only simply reconstructed signals

● But to prepare for HL-LHC (~2023), we need to save more (x100)
● Promising ansatz: Generative models, realized as DNNs

● Variational Autoencoders (VAEs)
● Generative Adversarial Networks (GANs)
● …

  → Generation of realistic samples according to training samples

● Unsupervised learning

Advantages over classic MC:
● Neural network inference much faster than reconstruction (x 105)
● Parallel computing (GPU), not so much CPU-bound
● Can use commercial infrastructure: GPU clusters, cloud 

computing
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Fast simulation: GANs

Generative Adversarial Network:
Two networks trained simultaneously: Generator and discriminator

● In competition & cooperation, generator learns to create more and 
more realistic samples

● Several studies show that deep GANs are able to reproduce a very 
large feature space

Samples
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Fast simulation: CaloGAN

In ALICE, proof-of-concept work is ongoing to use GANs
● to simulate fully-reconstructed tracks with TPC
● to perform detector reconstruction of particle-level data

Outlook what is possible: CaloGAN (GAN for ATLAS LAr calorimeter)
Deposited

energy

Energy fraction
in ith layer
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Fast simulation: CaloGAN

In ALICE, proof-of-concept work is ongoing to use GANs
● to simulate fully-reconstructed tracks with TPC
● to perform detector reconstruction of particle-level data

Outlook what is possible: CaloGAN (GAN for ATLAS LAr calorimeter)
Deposited

energy

Energy fraction
in ith layer

● Works for complex 
segmented calorimeter

● Up to five orders of 
magnitude faster

● More work to be done until 
ready for production



  

Some pragmatic hints:
How to start an ML-analysis
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How to design a good model

Define your problem
● Is it a regression or classification task?

Optimizer, loss function, activation function, etc. depend on this choice
● In a classification task, do you need multiple classes or does binary 

classification suffice?
Binary classification might be easier to learn for the network than multi-class classification

● Will the problem only rely on high-level parameters?
If yes, also different technique (like BDTs) can be considered
High-level parameters are e.g. jet mass, jet shapes. Low-level parameters e.g. constituents

Define your dataset
● In case of classification, clearly define signal and background
● In case of regression, be sure your regression parameter is well 

defined and represents what you want
Crucial step, better put more effort here than less

● Which input features could potentially have discrimination power for 
your problem? Implement them
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How to design a good model

Define your model(s)
● Get inspired by similar problems, experiment with different designs
● Once you found a suitable design → Perform grid search

Clever “brute force” trial of possible hyper parameters
● Number of layers, neurons per layers …
● Activation function, loss function, …

If suitable, combine several models on features
● Useful, if the models work on distinct input features
● Example: Combination of PID classifier models on TPC and TOF 

might be useful
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Systematic uncertainties

In general, calculation of systematic uncertainties very similar to 
standard analysis

1) Method commissioning & validation
2) Uncertainty on method
3) Uncertainty from analysis parameter variations
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Systematic uncertainties

In general, calculation of systematic uncertainties very similar to 
standard analysis

1) Method commissioning & validation
2) Uncertainty on method
3) Uncertainty from analysis parameter variations

Commissioning & validation:
Test that ML technique brings expected results, e.g. in Monte Carlo

● Not always easy: Check cross cross correlations with other analysis 
parameters to guarantee that measurement has not strong bias

● Same to be done for standard analysis, but more effort to be done 
for ML techniques

● Many experts still need to be convinced
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Systematic uncertainties

In general, calculation of systematic uncertainties very similar to 
standard analysis

1) Method commissioning & validation
2) Uncertainty on method
3) Uncertainty from analysis parameter variations

Uncertainty of Machine Learning method:
Test sensitivity to method configuration

● Slightly change neural network architecture/ model parameters
● Even possible: Compare to results from other models

→ might overestimate uncertainty
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Systematic uncertainties

In general, calculation of systematic uncertainties very similar to 
standard analysis

1) Method commissioning & validation
2) Uncertainty on method
3) Uncertainty from analysis parameter variations

Uncertainty of analysis parameter variations:
Test sensitivity to certain analysis parameters

● Similar to the default analysis, but have in mind:
→ Depending on input data, result can implicitly depend on more 

parameters
● Might need huge amount of resources: Model training done several 

times
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Conclusions

● This talk only presented some highlights
→Machine Learning is much more!

● Fast growing field, a lot of research being done
● In physics, already used in many applications
● Might help us with striking problems

● More precise analyses …
● Fast simulation
● Reliable QA

Take part:
● IML meetings
● Tutorials, further reading & getting started:

https://github.com/iml-wg/HEP-ML-Resources

https://github.com/iml-wg/HEP-ML-Resources


  

vqa.cloudcv.org

Thank you for your attention!



  

Backup



  

Applications in high energy physics:
DQM/QA
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DQM/QA

● Takes place during data taking 
(DQM) and shortly after (QA)

● Needs a lot of resources
● Even worse for LHC Run III, 

when much more data will be 
recorded

● Usual approach: Experts give 
flags to recorded runs using 
DQM/QA histograms

● Data Quality Management (DQM) and Quality Assurance (QA) 
still huge amount of work from experts

● Machine Learning can help with several aspects, e.g. 
anomaly detection & automatic data classification
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DQM/QA

● Current research approach uses more than 200 physics 
parameters from available QA parameters

● First tests show that automatic/assisted classification is possible
● Also other approaches tested: GANs for anomaly detection, 

LSTM autoencoders for time series prediction (inspired by ECG 
anomaly detection)

Classification: BadClassification: Good



  

b-jet tagging in 
ALICE
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Jets: Heavy-flavor jet tagging

● Jets from b-/c-quarks interesting probes in heavy-ion collisions
● In-medium modification of b-jets different to udsg-jets

● Larger energy loss for gluons than quarks (color charge)
● “Dead cone effect”: For massive quarks, gluon bremsstrahlung 

suppressed at smaller angles w.r.t. parton direction
● Approach in ALICE: deep learning tagger
● Exploit that B-hadrons decay in the 

(sub-)millimeter range
→ displaced from primary vertex
→ reconstruct secondary vertices

“Conventional” approach: Rectangular 
cuts on properties of most displaced vertices

Our ansatz: Apply neural network to several 
low-level input parameters

http://bartosik.pp.ua/hep_sketches/btagging
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Jets: Heavy-flavor jet tagging

● Tagger uses two subnets 
which are merged
● Secondary vertices
● Track impact parameters

● 1D convolutional networks 
exploiting vertex or 
constituent relations

● Each subnet optimized via 
grid search, separately:

“Clever brute force”
● Powerful concept:

● Find suitable designs for 
available discriminators

● Optimize separately
● Merge with neural net
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