Charmed baryon production in pp collisions with ALICE

Jaime Norman for the ALICE collaboration LPSC Grenoble

Workshop on singly and doubly charmed baryons, LPNHE Paris 26th June 2018

Laboratoire de Physique Subatomique et de Cosmologie

Open heavy-flavour production in pp collisions

- Heavy quarks (charm and beauty) are produced in hard partonic scattering processes
 - $m_{c,b} >> \Lambda_{QCD} \rightarrow \alpha_s(m_q^2) \propto \ln^{-1}(m_q^2/\Lambda_{QCD}^2) <<1$
 - m_Q sets hard scale perturbative QCD applicable

"Factorisation":

 $d\sigma_{AB \to h}^{hard} = f_{b/B}(x_1, Q^2) \otimes f_{a/A}(x_2, Q^2) \otimes d\sigma_{ab \to c}^{hard}(x_1, x_2, Q^2) \otimes D_{c \to h}(z, Q^2)$

Open heavy-flavour production in pp collisions

- Heavy quarks (charm and beauty) are produced in hard partonic scattering processes
 - $m_{c,b} >> \Lambda_{QCD} \rightarrow \alpha_s(m_q^2) \propto \ln^{-1}(m_q^2/\Lambda_{QCD}^2) <<1$
 - m_Q sets hard scale perturbative QCD applicable

"Factorisation":

 $d\sigma_{AB \to h}^{hard} = f_{b/B}(x_1, Q^2) \otimes f_{a/A}(x_2, Q^2) \otimes d\sigma_{ab \to c}^{hard}(x_1, x_2, Q^2) \otimes D_{c \to h}(z, Q^2)$

- Open heavy-flavour production measurements in pp collisions:
 - Important test of pQCD-based calculations
 - Sensitive to fragmentation functions determined from e+e- collisions
 - Sensitivity to **low-***x* **gluon PDF** ($p_T \rightarrow 0$)

Charm production at the LHC

Charmed-hadron production - test of pQCD

- Heavy-flavour production extensively studied in hadron collisions
- Cross sections of D mesons at the LHC in agreement with pQCD predictions at central and forward rapidity
- Similar observations made at different collision energies
- Beauty-meson production also described well by theory

 FONLL: M. Cacciari et al. JHEP 05 (1998), JHEP 10 (2012)

 GM-VFNS: B.A. Kniehl et al. Eur. Phys. J. C 41 (2005), Eur. Phys. J. C 72 (2012) 2082

 Charmed baryon workshop - 26-Jun-2018

 Jaime Norman (LPSC)

Charm quark fragmentation

Charmed-hadron ratios - sensitive to fragmentation process

- fragmentation fractions expected to be universal (fragmentation universality)
 - → same in different systems, energies, etc
- Measurements in different collision systems (ee, ep, pp) and energies support this picture

Charm quark fragmentation

Charmed-hadron ratios - sensitive to fragmentation process

- fragmentation fractions **expected to be universal** (*fragmentation universality*)
 - → same in different systems, energies, etc
- Measurements in different collision systems (ee, ep, pp) and energies support this picture

Baryon production measurements

- Very few charmed-baryon production measurements in hadron colliders
 - $\Lambda_{\rm C}$ production measured by LHCb at $\sqrt{s} = 7$ TeV
 - Higher-mass charmed baryon production measurements (e.g. \(\mathcal{E}_c^0\)) only exist in e⁺e⁻ collisions
- Indication in beauty sector that beauty-baryon production depends on collision
 System
 CDF: Phys.Rev.D77:072003,2008
 LHCb: Phys. Rev. D85 , 032008 (2012)

Jaime Norman (LPSC)

 Predictions of baryon production including string formation beyond leading colour approximation anticipates *larger* baryon/meson ratios

Charmed baryon workshop - 26-Jun-2018

LHCb: Nucl. Phys.B871 (2013) 1-20

C. Bierlich, J.R. Christiansen, Phys. Rev. D 92 (2015) 094010 J.R. Christiansen, P.Z. Skands JHEP 08 (2015) 003

Charmed baryon production with ALICE

 Λ_{c} + production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s}_{NN} = 5.02$ TeV JHEP 1804 (2018) 108

First measurement of Ξ_c^0 production in pp collisions at $\sqrt{s} = 7$ TeV

Phys.Lett. B781 (2018) 8-19

Note: here I touch on results in p-Pb collisions - see Elisa's talk tomorrow for more information/latest results in p-Pb!

Charmed baryon workshop - 26-Jun-2018 Jaime Norman (LPSC)

The ALICE apparatus

The ALICE apparatus

Charmed baryon reconstruction

- PID using TPC via dE/dx and TOF via time-of-flight measurement
 - nσ cuts, or Bayesian approach to identify particles
- Cuts on decay topologies
 exploiting decay vertex
 displacement from primary
 vertex
- **Signal extraction** via invariant mass distribution in bins of transverse momentum
- B feed-down subtraction using pQCD-based estimation of beauty-baryon production
- Efficiency, acceptance corrections

Hadronic decays

 Λ_c^+ baryon M = 2284 MeV/ c^2 Quark content *udc* ct = 60 µm

Charmed baryon reconstruction

- PID using TPC via dE/dx and TOF via time of flight measurement
 - Λ , Ξ candidates reconstructed
- Wrong-sign (WS) e-Λ (e-Ξ-) pairs subtracted from right-sign (RS) spectra e+Λ (e+Ξ-)
- Subtract contributions from:
 - $\Lambda_{b^0}(\Xi_{b^0})$ in wrong-sign spectra
 - $\Xi_c^{0,+}$ in right-sign spectra for Λ_c^+ analysis
- Unfold e⁺Λ(e⁺Ξ⁻) p_T spectra to obtain Λ_c⁺ (Ξ_c⁰) spectra
- B feed-down subtraction using pQCD-based estimation of beauty baryon production (Λ_c+ only!)
- Efficiency, acceptance corrections

 $\begin{array}{lll} \Xi_c{}^+ \mbox{ baryon } & \Lambda_c{}^+ \mbox{ I} \\ M = 2471 \ \mbox{MeV}/c^2 & M = \\ \mbox{Quark content } usc & \mbox{Quar} \\ c\tau = 34 \ \mbox{\mu m } & c\tau = \end{array}$

 Λ_c^+ baryon M = 2284 MeV/c² Quark content *udc* ct = 60 µm

Semileptonic decays

Charmed baryon workshop - 26-Jun-2018

Results

$\Lambda_c^+ p_T$ -differential cross section in pp collisions

- Λ_c+ p_T-differential cross section
 significantly underestimated by theory
 - GM-VFNS: Next-to-leading order QCD with large logarithms resummed to all orders
 - Non-perturbative fragmentation estimated from e+e- collision data
 B.A. Kniehl, G. Kramer: Phys. Rev. D 74 (2006) 037502
 - **POWHEG:** MC generator with next-to-leading order accuracy
 - PYTHIA parton shower

GM-VFNS: B.A. Kniehl et al. Eur. Phys. J. C 41 (2005), Eur. Phys. J. C 72 (2012) 2082 POWHEG: S. Frixione et al.: JHEP 09 (2007) 126

Charmed baryon workshop - 26-Jun-2018

Λ_{c} + p_{T} -differential cross section in pp collisions

Λ_{c} +/D⁰ baryon-to-meson ratio vs models

- Λ_{c^+}/D^0 ratio higher than expectation from MC
- PYTHIA8 tune with enhanced colour reconnection closer to data
 - String formation beyond the leading-colour approximation
- Flat rapidity trend predicted by models not in agreement with ALICE and LHCb measurements

Charmed baryon workshop - 26-Jun-2018

Λ_c+/D⁰ baryon-to-meson ratio

• ALICE measurement systematically higher than LHCb

Λ_c+/D⁰ baryon-to-meson ratio

Measurement	$\Lambda_{c}^{+}/D^{0} \pm \text{stat.} \pm \text{syst.}$	System	√s (GeV)	Kinematics
CLEO	0.119 ± 0.021 ± 0.019	ee	10.55	
ARGUS	0.127 ± 0.031 (stat.+syst.)	ee	10.55	
LEP average	0.113 ± 0.013 ± 0.006	ee	91.2	
ZEUS DIS	$0.124 \pm 0.034^{+0.025}_{-0.022}$	ер	320	$1 < Q^2 < 1000 \text{ GeV}^2, \ 0 < p_T < 10 \text{ GeV/c}, \ 0.02 < y < 0.7$
ZEUS γp HERA I	$0.220 \pm 0.035 ^{+0.027}_{-0.037}$	ер	320	130 < W < 300 GeV, Q² < 1 GeV², <i>p</i> _T > 3.8 GeV/c, η < 1.6
ZEUS γp HERA II	$0.107 \pm 0.018 ^{+0.009}_{-0.014}$	ер	320	130 < W < 300 GeV, Q² < 1 GeV², <i>p</i> _T > 3.8 GeV/c, η < 1.6
ALICE	0.543 ± 0.061 ± 0.160	рр	7000	1 < <i>p</i> _T < 8 GeV/c, η < 0.5
ALICE	0.602 ± 0.060 ^{+0.159} -0.087	pPb	5020	2 < <i>p</i> _T < 12 GeV/c, η < 0.5

- Baryon-to-meson ratio higher than previous measurements in different collision systems + kinematic regimes (+ LHCb at ~0.2-0.3)
- For a more robust comparison it will be very important to measure the Λ_c^+ down to $p_T=0$ with good precision

$\Xi_c^0 p_T$ -differential cross section in pp collisions

- Ξ_c^0 production cross-section-times-branching-ratio measured from $1 < p_T < 8 \text{ GeV}/c$
 - Not feed-down corrected includes $\Xi_b \rightarrow \Xi_c {}^0X \rightarrow e^+\Xi^-v_e$

$\Xi_c^0 \rightarrow e^+\Xi^-v_e/D^0$ baryon-to-meson ratio

- Baryon-to-meson ratio $\Xi_c^0 \rightarrow e^+\Xi^-v_e/D^0$ higher than expectation from theory
- $\Xi_c^0 \rightarrow e^+\Xi^-v_e$ branching ratio not known: range in prediction bands (0.83-4.2%) is the envelope of theoretical predictions

Phys. Rev. D40 (1989) 2955, Phys. Rev. D43 (1991) 2939, Phys. Rev. D53 (1996) 1457

 PYTHIA8 with enhanced colour reconnection closer to data

Charmed baryon workshop - 26-Jun-2018

Summary and perspectives

- First measurement by ALICE of charmed-baryon production in pp collisions intriguing;
 - Charmed-baryon production in pp collisions higher than expectations from e⁺e⁻ collisions
 - Violation of fragmentation universality?
- Run 2 data beginning to aid in answering some open questions

Larger pp datasets collected at 5 TeV, 13 TeV Larger p-Pb dataset collected at 5 TeV

Summary and perspectives

- First measurement by ALICE of charmed-baryon production in pp collisions intriguing;
 - Charmed-baryon production in pp collisions higher than expectations from e⁺e⁻ collisions
 - Violation of fragmentation universality?
- Run 2 data beginning to aid in answering some open questions

Larger pp datasets collected at 5 TeV, 13 TeV Larger p-Pb dataset collected at 5 TeV

- *p*_T-dependent baryon production?
 - Fragmentation/coherence effects manifest themselves in different baryon-tomeson p_T shapes
 - Kinematic range covered by different measurements not exactly the same important to extend measurement to p_T=0
- Multiplicity-dependent baryon production?
 - Baryon production could be modified at higher/lower multiplicities
- Energy-dependent baryon production?
 - Continuity from e^+e^- energies \rightarrow LHC energies?

Backup

Charmed baryon workshop - 26-Jun-2018

- Cross sections of B mesons at the LHC in agreement with pQCD predictions
 - FONLL, GM-VFNS: Next-to-leading order with next-to-leading-log resummation
 - POWHEG, MC@NLO: MC generators with next-to-leading order accuracy, with leading-log Parton shower
- Similar agreement of charm and beauty meson production with theory at Tevatron

 FONLL: M. Cacciari et al. JHEP 05 (1998), JHEP 10 (2012)

 GM-VFNS: B.A. Kniehl et al. Eur. Phys. J. C 41 (2005), Eur. Phys. J. C 72 (2012) 2082

 Charmed baryon workshop - 26-Jun-2018

 Jaime Norman (LPSC)

POWHEG: S. Frixione et al. JHEP 09 (2007) 126 MC@NLO: JHEP 08 (2003) 007

pp: total charm and beauty cross section

ALICE: Phys. Rev. C 94 (2016) 054908 ALICE: Phys. Lett. B 763, (2016) 507-509

Total charm and beauty cross section described well by predictions at NLO

pp: Charm quark fragmentation

Can hadronisation be modified?

- Multi-parton interactions, coherence effects at LHC energies may affect hadronisation
- e.g. within PYTHIA, enhanced colour reconnection modes gives better agreement with measured N/K⁰s ratio
 - String formation beyond the leading-colour approximation, specific tuning of the colour reconnection parameters
 - String junctions provide new source of baryon production
- Gives physical, microscopic picture of hadronisation

Interesting to extend these studies to heavy-flavour sector $\rightarrow \Lambda_{C}^{+}/D^{0}$

C. Bierlich, J.R. Christiansen, Phys. Rev. D 92 (2015) 094010 J.R. Christiansen, P.Z. Skands JHEP 08 (2015) 003 25

Charmed baryon workshop - 26-Jun-2018

pp: D meson ratios

- Production ratios of D mesons compatible with theoretical predictions (in which charm fragmentation is based mainly on measurements in e⁺e⁻ collisions)
- Include Λ_C+: Very few charmed baryon production measurements in hadron colliders
 LHCb: Nuclear Physics, Section B 871 (2013)

Charmed baryon workshop - 26-Jun-2018

pp(pp): Beauty baryon fragmentation

Indications that the fraction of b-baryons depends on the collision system

 b-baryon fragmentation in pp
 collisions over 2x that in e+e- at
 Z resonance (though
 uncertainties large)

- **2.** p_T dependence for $f_{\Lambda b} / (f_u + f_d)$ [3] ($f_q = B(b \rightarrow B_q)$) at the LHC
 - Similar observation at the Tevatron in pp
 collisions

Table 1: Fragmentation fractions of b quarks into weakly-decaying b-hadron species in $Z \rightarrow b\bar{b}$ decay, in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

$b~{\rm hadron}$	Fraction at Z $[\%]$	Fraction at $\overline{p}p[\%]$
B^+, B^0	40.4 ± 0.9	33.9 ± 3.9
B_s	10.3 ± 0.9	11.1 ± 1.4
\boldsymbol{b} baryons	8.9 ± 1.5	21.2 ± 6.9

http://pdg.lbl.gov/2015/reviews/rpp2015-rev-b-meson-prod-decay.pdf

LHCb: Phys. Rev. D85, 032008 (2012)

CDF: Phys.Rev.D77:072003,2008

pp: Ξ_c^0 production

• Exotic charmed baryons in the news recently (Ξ_{cc}^{++} , Ω_c^0 resonances)

LHCb: LHCb-PAPER-2017-018 LHCb: Phys. Rev. Lett. 118, 182001 (2017)

- Charm hadron *production* measurements in hadron collisions limited to low-mass mesons and baryons
 - Only Ξ_c⁰ production measurements in e⁺e⁻ collisions
- New measurements of charmed baryons could provide further insight into hadronisation mechanisms

ARGUS: Phys. Lett. B247 (1990) 121
ARGUS: Phys. Lett. B303 (1993) 368.
CLEO: Phys. Rev. Lett. 74 (1995) 3113.
ARGUS: Phys. Lett. B342 (1995) 397. 12
BABAR: Phys. Rev. Lett. 95 (2005) 142003

p-Pb: Heavy-flavour production

- p-Pb collisions traditionally used to separate 'hot' effects in Pb-Pb collisions (effects due to hot dense deconfined matter) from 'cold nuclear matter' effects (effects due to the presence of a nuclei)
 - Initial state effects: modification of nuclear parton distribution
 - Final-state effects: (energy loss? Collectivity?)

p-Pb: Heavy-flavour production

- p-Pb collisions traditionally used to separate 'hot' effects in Pb-Pb collisions (effects due to hot dense deconfined matter) from 'cold nuclear matter' effects (effects due to the presence of a nuclei)
 - Initial state effects: modification of nuclear parton distribution
 - Final-state effects: (energy loss? Collectivity?)
- D-meson nuclear modification factor
 R_{pPb} indicates minimal modification
 to p_T spectrum w.r.t pp collisions

p-Pb: Heavy-flavour production

- p-Pb collisions traditionally used to separate 'hot' effects in Pb-Pb collisions (effects due to hot dense deconfined matter) from 'cold nuclear matter' effects (effects due to the presence of a nuclei)
 - Initial state effects: modification of nuclear parton distribution
 - Final-state effects: (energy loss? Collectivity?)
- D-meson nuclear modification factor
 R_{pPb} indicates minimal modification
 to p_T spectrum w.r.t pp collisions
- Modification to charmed baryon production in p-Pb collisions?
 - (strange) //K ratio increases towards higher multiplicity

Charmed baryon workshop - 26-Jun-2018

Strange baryon-to-meson ratio

- Enhancement in the baryon-to-meson ratio is also expected if coalescence has a role to play in hadronisation
 - Proton/pion and *N*/K⁰_s ratios **enhanced in Pb-Pb collisions**
 - A similar enhancement is seen in high multiplicity p-Pb collisions

Coalescence? flow? Interplay between both effects?

pp and p-Pb collisions

- Many of these studies fit into the broader scope of understanding many 'Pb-Pblike' phenomena emerging in high multiplicity pp/p-Pb collisions:
 - Di-hadron azimuthal correlations to Large Δη
 Large Δη
 - Mass-dependent azimuthal anisotropy ALICE: Phys. Lett. B 726 (2013) 164-177

ALICE: Phys. Lett. B 728 (2014) 25 CMS: Eur. Phys. J. C 74 (2014) 2847

Strangeness enhancement...

ALICE: Nature Physics 13, 535-539 (2017)

What is the origin of the continuity of phenomena seen from small to large systems?

Charmed baryon BDT analysis

Hadronic decays

- BDT analysis performed for the Λ_c⁺ → pK⁻π⁺ and Λ_c⁺ → pK⁰_S in p-Pb collisions
- BDT trained on simulated signal sample, and background sample from simulation or data
 - Input variables include p_T of decay products, topological properties of decay, and PID variables
- Final result merged with std. analysis taking into account correlation between analyses

Analysis allows for slightly better statistical precision + gain in signal efficiency

TMVA: PoS(ACAT)040

Charmed baryon workshop - 26-Jun-2018

Charmed baryon signal extraction

 Signal extracted from 2 < p_T < 12 GeV/c in p-Pb collisions

Hadronic decays

 Signal extracted from 2 < p_T < 8 GeV/c in pp collisions

p_T -differential cross section measurement (Λ_C^+)

p_T -differential cross section measurement (Ξ_C^0)

Extracted raw yield in the fiducial acceptance

Semileptonic RS-WS subtraction

 Wrong-sign subtracted eE spectrum shape in agreement with expectation from simulation

Charmed baryon corrections

• Correct for:

Semileptonic decays

- $\Lambda_{b^0} \rightarrow e^-\Lambda_c^+ \bar{v}_e \rightarrow e^-\Lambda X$ ($\Xi_{b^0} \rightarrow e^-\Xi^-v_e X$) contribution in wrong-sign spectra:
 - Λ_b^0 contribution from Λ_b^0 measurement by CMS* up to 10% correction
 - Ξ_b^0 production not measured contribution estimated from BR(b $\rightarrow \Xi_b$)· BR($\Xi_b \rightarrow \Xi^{-1-vX}$) and BR(b $\rightarrow \Lambda_b^0$)·BR($\Lambda_b^0 \rightarrow \Lambda^{-vX}$) measurements in e⁺e⁻ collisions^{*} - Up to 2% correction
- $\Xi_c^{0,+} \rightarrow e^+ \Xi^{-,0}v \rightarrow e^+ \Lambda \pi^{-,0}v$ contribution in right-sign spectra for Λ_c^+ measurement (2 methods):
 - **1.** Determined from measured Ξ_c^0 cross section and measured BR($\Xi_c^+ \rightarrow e^+ \Xi^0 v_e$)/BR($\Xi_c^0 \rightarrow e^+ \Xi^- v_e$) ratio
 - 2. $c\tau(\Lambda_{c^+} \rightarrow \Lambda + X) < c\tau(\Xi_c \rightarrow \Xi + X \rightarrow \Lambda + X)$ MC fit to Λ distance from primary vertex

 $\rightarrow \Xi_c^{0,-}$ feed-down fraction = 0.46 ± 0.06

- **Unfold** $e^+\Lambda(e^+\Xi^-) p_T$ spectra to obtain Λ_c^+ ($\Xi c0$) spectra
- B feed-down subtraction using pQCD-based estimation of beauty baryon production (Λ_c+ only!)
- Efficiency, acceptance corrections

Charmed baryon workshop - 26-Jun-2018

CMS: Phys. Lett. B714 (2012) 136–157
 ALEPH: Phys. Lett. B384 (1996) 449
 ALEPH: Eur. Phys. J. C2 (1998) 197
 Phys. Rev. Lett. 74 (1995) 3113

Systematic uncertainties in pp collisions

Sustamatia una sourca	$\Lambda_{c^{+}} - > pK^{-}\pi^{+}$		$\Lambda_{c}^{+} - > pK^{0}s$	
Systematic unc. source	Low <i>p</i> _T (%)	High <i>р</i> т (%)	Low <i>p</i> _T (%)	High <i>р</i> т (%)
Yield extraction	11	4	7	9
Tracking efficiency	4	3	7	5
Cut efficiency	11	12	5	6
PID efficiency	4	4	5	5
MC pT shape	2	2	negl.	1.5
B feed-down	+1 -4	+2 -11	negl. -2	+1 -4
BR	5.1		5.0	

Similar for p-Pb (backup)

Sustamatia una sourca	Λ _c + ->	e+Λv _e	Ξ _c ⁰ -> e+Ξ-ν _e		
Systematic unc. source	Low <i>p</i> _T (%)	High <i>p</i> т (%)	Low <i>p</i> _T (%)	High <i>p</i> т (%)	
Yield extraction	17	17	5	5	
Efficiency, acceptance	28	13	30	14	
Missing neutrino momentum	3	11	29	10	
B feed-down	negl.	+1 -7	-		
BR	11		-		

Luminosity uncertainty = 3.5%

Charmed baryon workshop - 26-Jun-2018

Hadronic decay

analyses

Semileptonic

decay analyses

Systematic uncertainties in p-Pb collisions

STD analysis

BDT analysis

	$\Lambda_{c}^{+} - pK^{-}\pi^{+}$		$\Lambda_{c}^{+} - > pK^{0}s$	
Systematic unc. source	Low <i>p</i> _T (%)	High <i>p</i> т (%)	Low <i>p</i> _T (%)	High <i>р</i> т (%)
Yield extraction	10	11	10	10
Tracking efficiency	10	7	10	6
Cut efficiency	9	12	5	7
PID efficiency	6	6	6	6
MC pT shape	2	2	1	3
B feed-down	+1 -5	+2 -10	negl.	negl.
BR	5.1		5.0	

	Λ _c + -> pK-π+		$\Lambda_{c}^{+} - > pK^{0}s$	
Systematic unc. source	Low <i>p</i> _T (%)	High <i>р</i> т (%)	Low <i>p</i> _T (%)	High р т (%)
Yield extraction	7	4	11	8
Tracking efficiency	10	7	10	6
Cut efficiency	8	6	5	8
PID efficiency	negl.	negl.	negl.	negl.
MC pT shape	negl.	3	negl.	negl.
B feed-down	+1 -5	+2 -10	negl. -3	+2 -7
BR	5.1		5.0	

Luminosity uncertainty = 3.7%

Charmed baryon workshop - 26-Jun-2018

$\Lambda_c^+ p_T$ -differential cross sections

• Good agreement between different decay channels + analysis methods

$\Lambda_{c}^{+}p_{T}$ -differential cross section in p-Pb collisions

- Λ_c⁺ p_T-differential cross section
 significantly underestimated by theory
 - **POWHEG:** MC generator with nextto-leading order accuracy
 - PYTHIA parton shower
 - Shao et al. : Data-driven model tuned on pp data at forward rapidity
 - Parameterises scattering amplitude using fit to LHCb Λ_c^+ cross section in pp collisions (2 < y < 4.5, $\sqrt{s} = 7$ TeV, 2 < p_T < 8 GeV/c)
 - Both models include EPS09
 parameteristion of nuclear PDF

POWHEG: S. Frixione et al.: JHEP 09 (2007) 126 Shao et al: Eur. Phys. J. C 77 (2017)

Λ_c^+/D^0 baryon-to-meson ratio vs models

• Λ_c^+/D^0 in p-Pb collisions recently measured by the LHCb experiment shows a flatter trend with rapidity

LHCb Λ_c^+/D^0 in p-Pb collisions

 Lc/D0 in p-Pb collisions measured by the LHCb experiment shows a flatter trend with rapidity

Λ_c+ nuclear modification factor *R*_{pPb}

$$\boldsymbol{R}_{\text{pPb}}(\boldsymbol{p}_{\text{T}}) = \frac{1}{\boldsymbol{A}} \frac{\mathrm{d}\boldsymbol{\sigma}_{\text{pPb}} / \mathrm{d}\boldsymbol{p}_{\text{T}}}{\mathrm{d}\boldsymbol{\sigma}_{\text{pp}} / \mathrm{d}\boldsymbol{p}_{\text{T}}}$$

 $R_{pPb} < 1 =$ suppression $R_{pPb} > 1 =$ enhancement

- Λ_{c^+} nuclear modification factor R_{pPb}
 - consistent with unity
 - Consistent with D-meson R_{pPb}

Minimal modification w.r.t pp collisions within uncertainties

Λ_c+ nuclear modification factor R_{pPb}

- Λ_c+R_{pPb} consistent with models assuming cold nuclear matter effects, or 'hot' medium effects
 - POWHEG + PYTHIA with CT10NLO+EPS09 PDF parameterisation of nuclear PDF
 - **POWLANG** 'small-size' QGP formation, collisional energy loss only

POWHEG: JHEP 09 (2007) 126 POWLANG: JHEP 03 (2016) 123