NA62: kaon physics strikes back!

Speaker: <u>Radoslav Marchevski</u> CPPM Seminar, 4th June 2018, Marseille, France

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Symmetry Breaking

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

The FCNC process $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

FCNC loop processes: $s \rightarrow d$ coupling and highest CKM suppression

Theoretical error budget Buras. et. al., JHEP11(2015)033

- Theoretically clean: Short distance contribution dominated.
- Hadronic matrix element measured with K₁₃ decays
- SM predictions:[Brod, Gorbahn, Stamou, Phys. Rev.D 83, 034030 (2011)],[Buras. et. al., JHEP11(2015)033] $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (8.4 \pm 1.0) \times 10^{-11}$
- Experimental result: [Phys. Rev. D 79, 092004 (2009)]

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ (BNL, "kaon decays at rest")

$K^+ \rightarrow \pi^+ v \overline{v}$ beyond the Standard Model

- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo,Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models [Isidori et al., Eur. Phys. J. C (2017) 77: 618]
- Leptoquarks [S. Fajfer, N. Košnik, L. Vale Silva, arXiv (2018)]
- Constraints from existing measurements (correlations model dependent)

★ Kaon mixing, CKM elements, K, B rare meson decays, NP limits from direct searches

 $K^+ \rightarrow \pi^+ v \overline{v}$: first NA62 results (R. Marchevski)

Kaons and the CKM unitarity triangle

- The CKM unitarity triangle can be constrained by kaon physics alone
- Comparison with B physics can provide description of NP flavour dynamics

Kaon physics @ NA62

Primary goal

- ***** Measurement of BR(K+ $\rightarrow \pi^+ \nu \bar{\nu}$)
- Kaon decay-in-flight technique
- Requirements
 - ☆ 10¹³ kaon decays
 - ★ Signal acceptance O(10%)
 - ★ $O(10^{12})$ background rejection
 - Broad physics program

~ 200 participants from: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Merced, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC

Analysis strategy

- Timing between sub-detectors ~ O(100 ps)
- Kinematic suppression ~ O(104)
- Muon suppression > 10⁷
- π^0 suppression (from K⁺ $\rightarrow \pi^+\pi^0$) > 10⁷

Signal and background control regions are kept blind throughout the analysis

NA62 runs

NA62 beam and detector

- Secondary positive Beam:
 - ★ 75 GeV/c momentum, 1 % bite
 - ጵ 100 μrad divergence (RMS)
 - \star 60x30 mm² transverse size
 - ★ K⁺(6%)/ π ⁺(70%)/p(24%)
 - ★ 33x10¹¹ ppp on T10 (750 MHz at GTK3)

- Decay Region:
 - ★ 60 m long fiducial region
 - 🜟 ~ 5 MHz K⁺ decay rate
 - \Rightarrow Vacuum ~ O(10⁻⁶) mbar

NA62 beam and detector

- Upstream detectors (K⁺):
 - ★ KTAG: Cherenkov counter for K⁺ ID
 - ★ GTK: Si pixel beam tracker
 - ★ CHANTI: Anti-counter for activity induced by inelastic beam-GTK3 interactions

- **Decay Region detectors** (π^+) :
 - ★ **STRAW:** Massless straw tracker (1.8% X₀)
 - ***** CHOD: Two scintillator hodoscopes to tag the π^+
 - *** LKr/MUV1/MUV2** : Calorimetric system for π^+ ID
 - *** RICH:** Cherenkov counter for π/μ ID
 - **LAV/SAC/IRC:** Photon veto detectors
 - ★ MUV3: Muon veto
 - ★ HASC/MUV0: Off-acceptance vetoes

Data set

- 2016 Data, 4 weeks of data taking
- **Trigger streams:**
 - ★ "PNN":
 - Hardware (L0): RICH hits, Hodoscope, No muons, < 20 GeV in LKr</p>
 - Software (L1): KTAG in time, No signals in LAV, Momentum in straw < 50 GeV/c
 - ★ "Control (minumum bias, downscaled)":
 - L0: Hodoscope hits

Offline analysis

- ★ Bad data based on detector performances identified on a spill-by-spill basis
- ★ Data samples: **PNN; Control:** K⁺ → $\pi^+\pi^0$, K⁺ → $\pi^+\pi^-$, K⁺ → $\mu^+\nu_{\mu}$
- ★ Signal selection tuned on MC, 10% PNN data, control data
- * Analysis in four 5 GeV/c wide π^+ momentum bins, from 15 to 35 GeV/c
- * Blind analysis procedure: signal and control regions kept masked for the whole analysis

1. Selection

- ★ K⁺ decays with a single charged particles in the final state
- **Particle identification:** π^+
- ☆ Photon and multi-charged rejection
- ★ Kinematic selection of signal regions
- 2. Determination of the Single Event Sensitivity (SES)
- 3. Estimation and validation of the expected background
- 4. Opening of the signal regions and results

1. Selection

π⁺ tracking: Straw spectrometer

 $K^+ \rightarrow \pi^+ v \overline{v}$: first NA62 results (R. Marchevski)

π^+ ID: RICH

- Mirrors aligned using: laser, tracks reconstructed from straw spectrometer
- Monitored using e⁺ (~16 hits / e⁺ ring)
- PM's aligned vs KTAG time: ring $\sigma(t) \sim 80$ ps
- Ring spectrometer track matched comparing ring centre and flight direction

NA62

 $K^+ \rightarrow \pi^+ v \overline{v}$: first NA62 results (R. Marchevski)

K⁺ ID: KTAG

- Geometrically aligned with the beam
- Pressure scan: optimal working point for K+
- PM's time alignment and time walk corrections: $\sigma(t) \sim 70$ ps
- K⁺ signal from at least 5-fold coincidence (>95% efficiency)

K⁺ tracking: GigaTracker

- 4D kaon track reconstruction using trigger and KTAG as time reference
- Time offset corrections dependent on Station, Chip, Column, Row of the pixel
- Pixel by Pixel time walk corrections ($\sigma(t)$ < 150 ps per station)
- Stations aligned with straw Spectrometer and calibrated using $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

 $K^+ \rightarrow \pi^+ v \overline{v}$: first NA62 results (R. Marchevski)

K– π association

- KTAG GigaTracker RICH time matching \rightarrow Kaon decay time (t_{decay})
- GigaTracker Straw Spectrometer spatial matching (CDA)
- 3.5% (<1%) K⁺ mis-tag if K⁺ track (not) present, dependent on beam intensity
- 75% **K**+ reconstruction and ID efficiency

Selection of kaon decays

- Selection of K decays
 - ★ K π association
 - ★ Z vertex (110 and 165 m)
 - ☆ Track slope
 - ☆ Track projection at collimator
 - ☆ No activity in CHANTI
- Tracks from «upstream»
 - ★ mismatching in GTK
 - \star Decays along the beam line
 - ★ Beam particle interactions in GTK

Kaon-decay kinematics

Kinematic resolution

Particle ID with calorimeters

- Electromagnetic calo (LKr), Hadronic calo (MUV1, 2), scintillator blocks (MUV3)
- MUV3+BDT classifier using: energy, energy sharing, clusters shape
- 0.6x10⁻⁵ μ^+ efficiency vs 77% π^+ efficiency

 $K^+ \rightarrow \pi^+ v \overline{v}$: first NA62 results (R. Marchevski)

NA62

Particle ID with RICH

- Track driven Likelihood particle ID discriminant
- Particle mass using track momentum
- Momentum measurement under mass hypothesis (velocity spectrometer)
- **2.5x10**⁻³ μ ⁺ efficiency vs 82% π ⁺ efficiency

Photon rejection

 $K^+ \rightarrow \pi^+ v \bar{v}$: first NA62 results (R. Marchevski)

Photon and multi-charged rejection

- Timing coincidence of signals in LKr, LAV, SAV not associated to π^+ and t_{decay}
- Coincidences of signals in LKr and hodoscopes not associated to π^+ , in time with t_{decay}
- No hits in time in HASC and MUV0 (off-acceptance veto); segments rejection in Straw
- Typical timing coincidences: ±3 to ±5 ns; energy dependent time cuts in LKr
- Fraction of surviving $K^+ \rightarrow \pi^+ \pi^0$ (15 35 momentum range) : ~ 2.5 x 10⁻⁸
- High suppression of $K^+ \rightarrow \pi^+ \pi^-$, $K^+ \rightarrow \pi^+ \pi^- e^+ v_e$

 $K^+ \rightarrow \pi^+ v \overline{v}$: first NA62 results (R. Marchevski)

Signal MC after selection

 $K^+ \rightarrow \pi^+ v \overline{v}$: first NA62 results (R. Marchevski)

Data after selection

2. Single Event Sensitivity (SES)

Signal Event Sensitivity (SES) definition

- Normalization: $K^+ \rightarrow \pi^+ \pi^0$ from control data
- Same $\pi^+ v \bar{v}$ selection: γ , multiplicity rejection not applied; $\mathbf{m}^2_{\text{miss}}$ cuts modified

$$N_{K} = \frac{N_{\pi\pi} \cdot D}{A_{\pi\pi} \cdot BR_{\pi\pi}} \qquad SES = \frac{1}{N_{K} \sum_{j} \left(A_{\pi\nu}^{j} \cdot \epsilon_{RV}^{j} \epsilon_{trig}^{j}\right)}$$

 N_K $N_{\pi\pi} \sim 6 \cdot 10^6$ $A_{\pi\pi} \sim 0.1$ D = 400

Number of K⁺decays Number of K⁺ $\rightarrow \pi^{+}\pi^{0}$ Normalization acceptance Control-trigger downscaling ϵ_{RV} Random veto efficiency ϵ_{trig} Trigger efficiency $A_{\pi\nu\nu}$ Signal acceptancej π^+ momentum bin

$$N_{K^+} = (1.21 \pm 0.02) \times 10^{11}$$

Signal acceptance

- Computed with MC
- Particle ID, losses due to interactions included

Trigger efficiency

- Measured on data using $K^+ \rightarrow \pi^+ \pi^0$ selected from control triggers
- Losses mainly from L0, L1 efficiency ~ 0.97

Random veto

Random signal losses due to γ + multi-charged rejection measured with $K^+ \rightarrow \mu^+ \nu_{\mu}$

■ $ε_{RV} \approx 0.76$ independent of $P_{π+}$, but depends on instantaneous intensity

Single event sensitivity results

$$SES = (3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \times 10^{-10}$$

 $N_{\pi\nu\nu}^{exp}(SM) = 0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$

		Source	$\delta SES (10^{-10})$
		Random Veto	± 0.17
		N_K	± 0.05
$V_{\pm} = -\pm \sqrt{2}$	$(4.0 + 0.1) $ σ	Trigger efficiency	± 0.04
PNN trigger efficiency	$(4.0 \pm 0.1)\%$ 0.87 ± 0.2	Definition of $\pi^+\pi^0$ region	± 0.10
Random veto	0.07 ± 0.02 0.76 ± 0.04	Momentum spectrum	± 0.01
	ļ	Simulation of π + interactions	± 0.09
		Extra activity	± 0.02
		GTK Pileup simulation	± 0.02
		Total	± 0.24

3. Background estimation

■ $f_{j^{kin}}$ (region) measured: $\pi^{+}\pi^{0}$ sample selected tagging the π^{0} with 2 γ's in Lkr

- MC studies with and without π^0 tagging
- π^0 and kinematic rejection assumed independent

$K^+ \rightarrow \pi^+ \pi^0$ background

$K^+ \rightarrow \pi^+ \pi^0 \gamma$ background

- Radiative tail in R2 estimated from MC:
 x6 higher than kinematic tails
- Single-γ veto efficiency measured on data
- Measured π^0 rejection reproduced on MC
- π⁰γ rejection of the radiative tail in R2 estimated from MC:
 - ***** x30 better than single π^0 rejection

K^+ → $\pi^+\pi^0(\gamma)$ background estimation

41

Γ $f_{j^{kin}}$ (region) measured: μ + ν sample selected tagging the μ + and applying γ rejection

- Same method applied to MC
- PID and kinematic rejection assumed independent
 - ★ Independence tested measuring muon PID with RICH directly on tails.

$K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$ background

$K^+ \rightarrow \mu^+ v_{\mu}(\gamma)$ background estimation

 $K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$ background validation

$$\mathcal{N}_{\pi\pi\pi}^{exp} = N(\pi^+\pi^+\pi^-) \cdot f^{kin}(R2)$$

$K^+ \rightarrow \pi^+ \pi^- e^+ v_e(K_{e4})$ background

- Background estimated using MC
 - ★ ~4 x 10⁸ million events generated
- Validate using 5 different control samples enriched with $K^+ \rightarrow \pi^+ \pi^- e^+ v_e$ decays

NA6

 $K^+ \rightarrow \pi^+ \pi^- e^+ v_e(K_{e4})$ background

Single- π - events, full $\pi v v$ selection, straw - multiplicity cuts inverted

Control region: $0.026 < m_{miss}^2 < 0.072 \text{ GeV}^2/c^4$

AG

$K^+ \rightarrow \pi^+ \pi^- e^+ v_e(K_{e^4})$ background estimation

- Decays along the beam line; beam particle interactions in GTK
- Random track matched in GTK and/or possible additional energy not detected

Upstream background

- Decays along the beam line; beam particle interactions in GTK
- Random track matched in GTK and/or possible additional energy not detected

PNN data: πvv selection, K- π matching inverted, Z_{vertex}, Box cut and CHANTI not applied

Upstream background

- Bifurcation on PNN triggered data inverting: matching (cut1); Cut box (cut2)
- BCD: reference sample; B' C' D' B'' C'': control samples \rightarrow 4 control samples studied
- A: signal region; A': control region

Upstream background

Process	Expected events in R1+R2
$K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
Total Background	$0.15\pm0.09_{\rm stat}\pm0.01_{\rm syst}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$K^+ \to \mu^+ \nu(\gamma)$ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
Upstream Background	$0.050^{+0.090}_{-0.030} _{stat}$

4. Result

Result

Result

Result

Result: RICH ring for the event

Run 6646, Burst 953, Event 543854, Track 1

 $K^+ \rightarrow \pi^+ v \overline{v}$: first NA62 results (R. Marchevski)

Events Observed	1
SES	$(3.15\pm0.01_{ m stat}\pm0.24_{ m syst})\cdot10^{-10}$
Expected Background	$0.15\pm0.09_{\rm stat}\pm0.01_{\rm syst}$

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) < 11 \times 10^{-10} @ 90\% CL$$
$$BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$$

Expected limit: $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 10 \times 10^{-10} @ 95\% \text{ CL}$ For comparison: $BR(K^+ \to \pi^+ \nu \overline{\nu}) = 28^{+44}_{-23} \times 10^{-11} @ 68\% CL$

 $BR(K^+ \to \pi^+ \nu \overline{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$ SM prediction

 $BR(K^+ \to \pi^+ \nu \overline{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11} \text{ (BNL, "kaon decays at rest")}$

- Processing of 2017 data is ongoing
 - $\star~\sim 20$ times more data than the presented statistics
 - ★ expected reduction of upstream background
 - ★ improvements of the reconstruction efficiency
- Preparing 2018 data taking
 - ☆ 218 days including stops
 - ★ ongoing studies to improve the signal acceptance
- ~ 20 SM events expected before LS2
- Running after 2018 to be approved
 - ★ Conditions for ultimate sensitivity under evaluation

- The new NA62 decay in flight technique works
- One event observed in the 2016 data
- $\blacksquare BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @ 95\% CL$
- O(20) events expected from 2017+2018 data.