Aux Tel Status plus "Bonus Material"

dkg 25 MAY 2018

- 33 parts coated both sides
- 22 with side 1
- 22 with side 2

AT Observing Strategy

Scheduler will be developed for the AT

- Simplified clone of the LSST schedule
- Based on past and predicted future LSST positions

Spatial aerosol and water variation and their evolution timescale are not well bounded

Effects are band dependent

Full sky characterization versus focusing observations towards LSST positions to be explored

Planning to advance AT science observations to late 2018/early2019

Also need to identify "standard" targets

AT will be available for use throughout commissioning

Robotic Auxiliary Telescope System

- Edgar J. Smith Telescope (aka Calypso) donated to LSST
 - 1.2m diameter
 - f/18
 - Two instrument ports
- Currently undergoing integration by ACE, Inc
 - Maintaining compatibility with LSST systems
- Will retain LSST camera systems for ATS (RO/DAQ/CCS)
- Goal is to measure the atmospheric transmission during LSST observations

LSST Auxiliary Telescope

Auxiliary Telescope Optical Model

Meeting the spectral resolution requirement (R~150 @ 900nm) and wavelength range requirement (350-1000nm in a single exposure for all seeing and elevation conditions requires two gratings. Poor seeing or high airmass Median seeing Imaging mode

OPTICAL DESIGN - RONCHI GRATINGS

Mechanical Design – Spectrograph Assembly

OPTICAL DESIGN - RONCHI GRATINGS

Power to AT

Aux Tel May 2018

AT Spectrograph and Camera

ATS SRS in Tucson

Calibration Target in Tucson

CCD – ITL-098: 870nm Response

CCD – ITL-098: Read Noise

Amplifiers 1,4, and 6 fail read noise

Camera Input Window BBAR Coating

AT Spectrograph

Spectrograph control

Control hardware will be a compact Rio. ACE will provide LabVIEW-based software to drive and communicate with the devices. The interface between ACE and LSST will be via TCP/IP/

ATS SRS CCS/DAQ rack in LSST Server room

LSST (Tucson) Server Room

AT Control Software Systems

Software for Aux Telescope (for Harvard)

Software for Aux Telescope (for Tucson)

Pathfinder Info

- Pathfinder exercises are being used to test interoperability of
 - Camera Control System (CCS)
 - Camera Data Acquisition System (DAQ)
 - Observatory Control System (OCS)
 - Telescope Control System (TCS)
 - Data Management (DM)
- Series of exercises
 - Starting with simulations
 - Moving to improved fidelity of simulations
 - Real data
 - Auxiliary Telescope (Spectrograph)
 - ComCam

SLACK channel for ATS

LSST – May 17, 2018

Camera Assembly

LSST cold plate

LSST Grid

RTM insertion

RTM Insertion

LSST Camera – back flange

The I&T BOT – LSST cleanroom

Shutter Blades

Shutter Rails

Commissioning Camera (ComCam)

Extra Slides

Full Dewar – No Input Window Flange

Changes in ETU#2

Likely a Serial Clock phase is missing: Flex Cable?

• ½ of S02 ITL-041 is broken, was working fats

BNL

Changes in ETU#2

raft image EgTU#1 & ETU#2, side-by-side (image-height) map (T: -95C vs. 20C)

MOUNTED ON NASMYTH PORT

