

Holographic **Optical Element** to measure the atmospheric transmission with AuxTel

Sylvie Dagoret, Jérémy Neveu, Olivier Perdereau and Marc Moniez (LAL-Orsay)

+ Marc Betoule and Laurent Le Guillou (LPNHE) PCWG-Workshop 25/may/2018

HOE for AuxTel

Usual gratings:

- all wavelengths not focused simultaneously due to optical path variation with the diffraction angle
- Distorsions (astigmatism) due to converging beam (not parallel)

Holograms:

- Focusing forced on the focal plane at all wavelengths
- No distorsions by design of the hologram

Holographic;

Theoretical hologram (linear phase encoding): only -1, 0, +1 orders

Symmetric

639 nm

d Source A

(in front of plate center)

axes

D

Source B

Symmetric

Realization of the HOE (Holographic Optical Element)

- Ultimate holography company:
 makes the best holograms in the
 world. Director (Mr Gentet) was the
 head of a Thales laboratory
 producing holographic windows for
 rafale planes until the end of cold
 war.
- 3 technologies:
 - Amplitude holograms: transmission modulation
 - Phase holograms: phase modulation (2 techniques)
- Tested together with Ronchi and blazed gratings during may-june 2017 CTIO run (18 nights)

Holograms on a telescope

Tests on telescope: 27 may-13 june 2017

Objectives

- Compare Ronchi, blazed gratings and holograms (phase & amplitude)
- Obtain data with various atmospheric conditions

Observations made

- 16 clear nights with variable conditions
- Measures and comparisons of spectra from:
 - **Standards HST** spectro-photométriques (**CALSPEC**) Extended series of consecutive measurements with varial airmass
 - Planetary nebulae

Narrow and strong emission lines

-> to study the dispersion law and estimate spectral resolution

Quasars

Strong redshifted H α -> to test R et IR spectrscopy

Disperser performances

- HOE designed to compensate geometrical distortions for 1rst diffractive order, by design
 - Tests with narrow H_{α} filter (FWHM = 6.4 nm)
 - Best results with the +1 order of the hologram

6

Let's look in more details

- SIMULTANEOUS focus procedures with the $H\alpha$ narrow filter.
 - 0 order focus (left) vs +1 order focus (right)

HOE performances: focus, resolution

Spectrum profile of CALSPEC standard star

Profile width of the dispersed first order light, as a function of the wavelength (Gunn-z passband)

- -> Commensurable with the expectations from simulations (ZEMAX)
- -> Low performance of the photopolymer hologram due to protective layer (not anti-reflective)

Disperser performances: 2nd order

HOE performances: planetary nebula

Why? narrow emission spikes with measured intensities $\rightarrow \lambda$ calibration, resolution, and $(\epsilon_{CCD} \times \epsilon_{diffraction})(\lambda)$ estimates Planetary nebula PNG032.9-02.8 emission spikes

Planetary Nebula SED

Quasar 3C273 SED (redshifted z=0.158)

Optical Test-bench at LPNHE

Simulation of the AuxTel convergent beam

- Focus on a LSST-type CCD sub-arcsec equivalent PSF from converging beam
- Focus independent from the wavelength (mirrors)
- Uniform beam density obtained with integrating sphere + 20μ hole
- Hologram installed on a XYZ mounting

Measurements to do on every disperser

- Volume of validity $\Delta X \Delta Y \Delta Z$ for acceptable use (>10mm10mm4mm)
- Spectral resolution $\lambda/\Delta\lambda$ with emission line lamp and monochromator
- Transmission as a function of λ .

HOE: schedule

- Janvier 2017: tests préparatoires au CTIO (Chili)
- Mai 2017: premiers prototypes d'hologrammes
- Juin 2017: tests de prototypes sur télescope au CTIO (Chili)
- **Eté 2017**: analyse des tests
- Automne-hiver 2017
 - simulations optiques et atmosphériques
 - Analyse: étude de la largeur équivalente de la bande d'absorption de l'eau (proche IR) et de l'absorption par les aérosols (bleu)

Spring-summer 2018

- production of finalized holograms (several technologies, 2/1 orders minimized; first order could take up to 80% of the light)
- measurements/characterization with the LPNHE test-bench
- End 2018-beginning 2019
 - Start operations on AuxTel
- **2019 2020**
 - Calibration of the system
 - Extensive observations of the various atmospheric conditions on-site

Atmospheric attenuation estimation update on CTIO data (jun 2017)

Sylvie Dagoret-Campagne
Marc Moniez
Jérémy Neveu
Olivier Perdereau

Outline

- **1** CTIO may-jun 2015 → 16 nights
 - ♦ Focus only on « 4 photometric nights »
- 2 Reconstructed the star spectra and wl calibration
 - ♦ Optimize reconstruction pipeline
 - ♦ Still systematics under study (disperser dependent)
- 3 Extract atmospheric feature (knowing calspec SED)
 - ♦ Set of time varying « atm. estimators» to be monitored
 - ♦ To feed into simulation in order to reproduce spectra data
- 4 Predict LSST atmospheric transmission for every exposure

Software Design & Analysis Progress

- 1 Parallel reconstruction of data & sim spectra (clear sky, aver. Sky, merra2 sky)
- ②Spectrum Extraction (data) → spectra in erg/cm2/s/nm
- 3 Being done: the automated close loop with chi²/likelihood func
 - Require the effective throughput

Principle of the Bouguer lines Methods

Proof on simulation

- Generate atm transm.
- Airmass: 1-2
- Clear sky

Fit bouguer line in wavelength bins

Saturation at molecular absorption 600-1000 nm

Reconstruction of light at TOA

(Top of Atmosphere)

Intercept of Bouguer lines (airmass z=0) saturates:

Molecular absorption

Extinction $\alpha z \rightarrow \alpha \forall z$

Bouguer line fit : effect of wavelength zero point accuracy : $\sigma(\lambda)=2$ nm

Bouguer line fit : effect of wavelength zero point accuracy : $\sigma(\lambda)=2$ nm

Requires a disperser with a very good wavelength accuracy $\sigma(\lambda)=2$ nm

Simulation: Bouguer lines fit method to get back throughput

3 atm. simulations:

- Clear sky, (no aerosol, no PWV)
- Average sky

 (aer=0.05, PWV=4mm)
- Merra sky (NASA/GMAO)

Fit Method OK, except
At molecular absorption
Line and bands

Simulation: Throughput: Use of Blue/Red filters

DATA: Fit of Bouguer lines on HoloAmAg 400-700 nm: ratio = Spectrum_{flam}(λ)/SED(λ)

DATA: Fit of Bouguer lines on HoloAmAg **700-1000 nm**: ratio = Spectrum(λ)/SED(λ)

Absolute Throughput with Ronchi (Qe x optics x 1st order disperser)

Throughput with HOE (Qe x optics x Filter x 1st order disperser)

Throughput comparison night 30/05/17 No filter

Extraction of atmospheric parameters in progress spectrum by spectrum

Jérémy N.

- Estimate the best model parameters:
 - PWV,
 - aerosols,
 - ozone,
 - $-\sigma(pix)$ (seeing)
 - $-\delta\lambda$ -shift
 - Using LibRadTran as the atmospheric model
 - Using the Throughput measured
- Extraction performed by MCMC techniques
- Model : Order 1+ Order 2

```
S(x) = [A1x(Simu(x-shift)+A2xSim((x-shift)/2)]*Gaussienne(reso))
```

Ronchi 400 spectrum

Hologram HoloAmAg

Covariance matrix for Ronchi400

Covariance matrix for HoloAmAg

Comments on the MCMC fit

- First encouraging determinations of atmospheric parameters
- Still room for progress
- O₂ line and H₂O band are much better fitted for HoloAmAg than for Ron400

CONCLUSION

- Progress in software chain including:
 - Spectrum extraction/background subtraction
 - Wavelength calibration, and λ =0 point
 - Detector Throughput (Ronchi400, HoloAmAg)
 - Extraction of parameters
- Still poor in data (only 4 photometric nights)
 - Not enough to accumulate variations over time
- Need further transmission measurement at HOLOSPEC test-bench

Mini-Data Challenge for atmospheric calibration

Sylvie Dagoret-Campagne LAL

Motivations

- → Setup methods to estimate atmospheric transmission
- → Different teams will Evaluate the performances of their methods
- → Evaluate the relative contribution of LSST alone config and (Auxiliary Telescope + LSST) config
 - → Set requirements on Auxiliary Telescope
- → On a fake but realistically simulated Dataset

Data Product

- N_{vis} visits (i=1,..., N_{vis}) scheduled by minion16 cadence
- N_{obj} objects sampled from a catalog of SED selected $(j=1,...,N_{obj})$
- F_i is the filter used for visit i
 - $F_i = U, G, R I, Z, Y according a cadence (minion 16)$
- Airmasses z_i of each visit i and the instrumental magnitude M_{ii} for each object j in the field :
 - the dataset : $\{z_i, F_i, \{M_{ij}, \delta M_{ij}\}_j\}_l$
- One spectrum (undelivered SED) of a reference star in the field (to combine with auxiliary telescope data)

List of Tasks

- Selection of star catalog : Phoenix → Done
- SED Sampling according the magnitude distribution in SNLS → almost done
- Atmospheric parameters distribution according MERRA2 → Done
- Atmospheric transparency calculated by libradtran → Done
- True effective LSST Filter → Done

Last Task: Calculation of Magnitudes and errors

```
How to go from cadence (z_{am}, sky) + SED + atm transm. + F_i \rightarrow \{M_{ij}, \delta M_{ij}\}
```

Two options can be used:

- saunerie (Nicolas R expert), python2
- LSST_SIM_MAF (python3) provides official LSST Filter Transmission
 - (still need to learn how to use lsst.sims.photUtils)

Validation of SIMS_MAF use

Learn LSST_SIMS_MAF by comparing the results to saunerie

 Check with Nicolas R, how we extract the parameters we want.

<u>Diffused background light</u> with librandtran comparison of clear sky and sky with aerosols

Sylvie Dagoret-Campagne and Arve Kylling December 2015

Scattering properties of atmosphere

Mie scattering peaked forward

Rayleigh scattering

Angular cross-section

Application to sky diffused background

- Libradtran simulate not only direct light
- But also diffused background

- Diffused background requires earth albedo
 (albedo for rocks also depend on weather conditions: wet/dry,snow,...)
 - > To be studied

Map of Clear sky diffused light sun at 30° zenith angle

Map of Clear sky diffused light sun at 60° zenith angle

Map of diffused light with aerosols sun at 30° zenith angle

Map of diffused light with aerosols sun at 60° zenith angle

NORMALIZED LIGHT

Map of Normalised <u>clear sky diffused light</u> sun at 30° zenith angle

Map of Normalised <u>clear sky diffused light</u> sun at 60° zenith angle

Map of normalised diffused light with aerosols sun at 30° zenith angle

Map of normalised diffused light with aerosols sun at 60° zenith angle

Radiance decrease with zenithal angle

