Atmospheric transparency determination From slitless spectroscopic observations

Survey Calibration Workshop - May 2018

\bigcirc 1		
Observations	Campaign	
	Cambaidii	

oboorvations sampaign	
2016	March
2016	August
2016	November
2016	December
2017	January
2017	June
2017	October

LSST Auxiliary telescope. And CTIO 0.9-m characteristics

	Aux. Tel.	CTIO 0.9-m
Diameter (m)	1.2	0.9
f/#	18	14
Focal Length (m)	21.6	12.6
Pixel (μm)	15	24
Arcsecond per pixel	0.15	0.40
FoV (arcmin)	13.6	30
Camera	ITL STA 3800	2048 x 2048 24 micron Tek2
Filters	2 wheels, 3x3 inches	2 wheels

Talk outline

Report on the main findings:

- 1. Key steps in image reduction,
- 2. Radiative transfer simulation,
- 3. Satellite data.

e+031.17e+031.19e+031.21e+031.23e+031.24e+031.26e+031.28e+031.3e+031.32e+031.34e

e+031.17e+031.19e+031.21e+031.23e+031.24e+031.26e+031.28e+031.3e+031.32e+031.34e

Processing Pipeline Flowchart

Measurement: the baseline

spectrum footprint

spectrum footprint

Extracting the flux

Extracting the flux

$$T_{atmo}(\lambda) = \frac{S_{obs}(\lambda)}{SED(\lambda) * T_{tel}(\lambda)}$$
 Determination of dispersion relation

$$T_{atmo}(\lambda) = \frac{S_{obs}(\lambda)}{SED(\lambda) * T_{tel}(\lambda)}$$
 Determination of dispersion relation

I - First estimate using the geometry:

distance between the focal plan and the grating. grating spacing $Pixel = d \times \left(\frac{\lambda/a}{\sqrt{1-(\lambda/a)^2}}\right)$

II - Fit observed spectral features against a template of SED * Tatmo

- The correction is several nm on the blue side
- Extrapolation of the solution at lower/higher wght is unreliable

Telescope throughput calibration

$$T_{atmo}(\lambda) = \frac{S_{obs}(\lambda)}{SED(\lambda) * T_{tel}(\lambda)}$$

Calibrate telescope throughput

Telescope throughput calibration

$$T_{atmo}(\lambda) = \frac{S_{obs}(\lambda)}{SED(\lambda) * T_{tel}(\lambda)}$$

Calibrate telescope throughput

$$N_{ADU}(\vec{r},\lambda) = B(\vec{r},\lambda) \cdot T(\vec{r},\lambda) \cdot QE(\vec{r},\lambda)/g$$

Collimated Beam Projector

Filters Transmission curves

Telescope throughput calibration

$$T_{atmo}(\lambda) = \frac{S_{obs}(\lambda)}{SED(\lambda) * T_{tel}(\lambda)}$$

Calibrate telescope throughput

$$N_{ADU}(\vec{r},\lambda) = B(\vec{r},\lambda) \cdot T(\vec{r},\lambda) \cdot QE(\vec{r},\lambda)/g$$

Based on lessons learned from previous attempts,

The elected method to determine Ttel will be to use the collimated beam projector (CBP) with a rectangular slit mounted in front of it, instead of circular pinholes. The resulting image fulfill all the requirements for proper flatfielding of dispersed images:

- It probes the same light-path as in a science exposure,
- the illuminated patch of the focal plane will be large enough to isolate an area of uniform intensity, and small enough so that orders do not overlap.

Determination of the atmospheric parameters without Ttel

It is possible to extract informations about the atmospheric transparency without knowledge of the telescope throughput, provided that:

The instrument response function is stable,

And associated with:

- A radiative transfer simulation,
- and satellite data.

Atmospheric Transparency Parametrization

Atmospheric Transparency Parametrization

25

Airmass

Ozone Column depth

MERRA2 data interpolation at CTIO lat-lon

Ozone follows both an annual and a circadian variations

Equivalent Width - Reminder

Precipitable Water Vapor

https://confluence.lsstcorp.org/display/DM/Merra-2+Movies+October+2017?preview=/73573194/73574326/20171020_TQV.mp4

PWV: comments on the analysis (1)

PWV: comments on the analysis (1)

MERRA2 data interpolation at CTIO lat-lon

MERRA2 specific humidity interpolation at CTIO lat-lon, Then integrated from 2200m to top of the atmosphere

Days October 2017

- From Satellite data, correct answer could be in between these two
- Hourly variations are most often sub-mm.

PWV: comments on the EW measurement (2)

Currently, systematics are introduced by:

- The definition of the position of the edges (seeing matters)
- The model for the continuum (SED*Ttel)

Determination of the Aerosol Optical Depth

$$S(\lambda, z, t) = SED(\lambda) \times T_{tel}(\lambda, t) \times T_{atmo}(\lambda, z, t)$$

Examining the same target at two different airmasses z1, z2:

$$\frac{S_{z1}(\lambda)}{S_{z2}(\lambda)} = \frac{T_{atmo}^{z1}(\lambda)}{T_{atmo}^{z2}(\lambda)} \tag{1}$$

It is common in astronomy to express the extinction in magnitudes, such that the transmission, $Tatm(\lambda,z^{\hat{}})$, is given by (Buton et al. 2012):

$$T_{atmo}^{z}(\lambda) = 10^{-0.4K_{atmo}(\lambda, z)} \tag{2}$$

With:

$$K_{atmo}(\lambda, \hat{z}) = \sum_{j} X^{\rho_j}(\hat{z}) \times k_j(\lambda)$$

In a region free of telluric lines (ρ j = 1):

X denotes airmass

the different components k_j are:

- Rayleigh scattering, kR,
- aerosol scattering, kA,
- ozone absorption, kO3,
- telluric absorption, k⊕.

$$K_{atmo}(\lambda, z) = zk_r + zk_A + zk_{O_3}$$

Using an inverse power law for the chromaticity of the aerosol scattering:

$$k_A(\lambda) = \tau \lambda^{-\alpha}$$

Rewritting Equation (1):

$$\frac{S_{z_1}(\lambda)}{S_{z_2}(\lambda)} = \frac{10^{-0.4z_1(k_r(\lambda) + k_{o3}(\lambda))} \cdot 10^{-0.4z_1\tau\lambda^{-\alpha}}}{10^{-0.4z_2(k_r(\lambda) + k_{o3}(\lambda))} \cdot 10^{-0.4z_2\tau\lambda^{-\alpha}}}$$

Using radiative transfer simulation of the observations without aerosols:

$$\frac{\left(S_{z_1}(\lambda)/(S_{z_2}(\lambda)\right)}{\left(T_{atmosim}^{z_1}(\lambda)/(T_{atmosim}^{z_2}(\lambda)\right)} = 10^{-0.4(z_2-z_1)\tau\lambda^{-\alpha}}$$

AOD Fitting interval

Practical test

LamLep in a time series - October 9th, 2017

Practical test

Aerosol Optical Depth

- What about the offset?
 - → 3-D MERRA-2 table for the aerosols.
- What about the drift with airmass?
 - Other single target observations in a timeseries.

Summary and Perspective

We have been conducting on-site campaigns to prepare for the integration of the LSST calibration sub-system.

- → We have learnt that CTIO 0.9m has a poor detector :(
- → We have prototyped an image reduction pipeline :)

Which goes from the raw image, up to the determination of atmospheric parameters.

The current approach uses a radiative transfer simulation, associated with satellite data.

- → There is a lot more to learn from satellite data *
- → AuxTel coming online soon!

^{*} Broadband observations versus synthetic photometry using satellite data.

Back-up slides

- * The informations that we extract from satellite data are the followings:
 - CTIO seats on a large east-west PWV gradient.
 - PWV and Ozone follow circadian variations.
 - PWV and Ozone are somewhat anti-correlated on an annual basis.
 - Large variations of AOD, PWV and Ozone can sometimes occur within a few hours timespan.
 - O3 and PWV gradients go along the same direction, both at CTIO and Mauna Kea.

Precipitable Water Vapor

Precipitable Water Vapor @s CTIO

Ozone

Vertical profile at CTIO site

Image reduction pipeline output

https://confluence.lsstcorp.org/display/DM/Data+Challenge?preview=/73579869/73579871/datachallenge.mp4

Aerosol determination

LamLep in a time series - October 9th, 2017

Aerosol determination

Ratio of observations

Ratio of Simulations

altitude 2.241 mol_modify H2O 4. MM aerosol_angstrom 1. 0.02 mol_modify O3 270 DU

Aerosol determination

What is going on here?

https://arxiv.org/pdf/1011.6156.pdf fig. 4 + AppendixA?

Patat 2010 0.00 -0.066000 7000 8000 4000 5000 Wavelength [Å]

Deviations of the derived extinction curve from the LBLRTM simulation for Cerro Paranal (observed minus model).

Regression to 0 airmass
Using 2 different zenith angle-to-airmass conversion

Result of the regression to 0 airmass

Downgrading the resolution of the simulation to match observations

sigma VS aperture

The spike does not change -> it's coming from the core of the profile, not the wings

Aperture flux, various apertures

56

Determination of 2nd order light contamination

Red blocking filter

Contamination = $Flux(w) / Flux(w/2) \sim 1\%$ cst

Signal extraction from fitting profile : Residuals

Gaussian fit - data

(Gaussian+Moffat) fit - data

Realtime Spectrometry VS photometry

The O2 EW does not correlated with the aperture —> good!

The impact on the O2 EW from varying the aperture is sub-percent when using Gauss flux —> Good also

The EW is ~20% higher in no filter images

Spectrum Extraction

Dispersion relation re-calibration

