Ubercal, GAIA & cadences

N. Regnault

Survey uniformity

- Why do we (DESC) care about survey uniformity ?
- Flux calibration
 - Primary flux reference(s) in specific locations on the sky
 - Flux scale must be transported on the full survey footprint
 - Essential for SN cosmology, target accuracy ~ 1 mmag
- Specific calibration error modes on the sky ?
 - may affect PZ determinations
 - at specific scales that are relevant for cosmology ?

Questions

- Main question is
 - How well can we transport the flux scale carried by a handful of flux reference on the entire sky ?
- Technical questions are
 - For a given cadence, can we solve the ubercal problem ?
 - Does interlacing DDF obs help improving the calibration ?
 - Are some dithering patterns significantly better than others ?
 - What is the impact of non-photometric sequences on solution ?
 - Are there specific error modes, at specific scales that have an impact on the analyses ?
 - Will adding GAIA help ?

Cadences

• Minion 1016

Non rolling cadences

Feature
"Feature - half mask"
"Feature - ²/₃" Rolling cadences
AltSched
AltSched rolling

Similar total #visits & survey depth

5

Very different cadence / obs strategy -

Very different cadence / obs strategy -

Different mean obs conditions

Different mean obs conditions

9

Ubercal-like model $m_i = m + ZP_{exp} + \delta ZP_{cell}$ Measurement Calibrated may Exposure ZP $\sim 1/$ month 9 $\sim 1/$ week 9

- Fitting simultaneously:
 - Calibrated magnitudes
 - Calibration parameters (ZP + uniformity maps)
- With constraints from
 - Primary references
 - Future uniform star catalog (GAIA ?)

Padmanabhan 2008 Schlafly et al, 2015 Burke & Rykoff, 2017

Method

- Pixellize the sky (with healpix)
 - Use pixels instead of star
 - nside ~ 1024 -> ~ 5,5 10^6 "stars" in the LSST footprint
- Implement a focal plane model
- Choose a measurement error model
- From a cadence, determine
 - For each exposure,
 - which healpix pixel was observed,
 - in which cell of the focal plane
- Build & invert the fisher matrix of the fit
 - Large (~ 5,5 Mstars)
 - ... but very sparse

For the real ubercal (using stars), see E. Rykoff (FGCM) F. Feinstein's talk

Focal plane model

- 21 rafts of 9 CCD each
- 1 independent cell / CCD
 - 189 cells
- Change the uniformity solution
 ~ every month
- Can define smaller pixellization

Projected on the sky

Mollweide view

Measurement = star_i in cell_j for exposure k

Ubercal Fisher matrix

- 10 minutes / core / yr of survey to build Fisher matrix from cadence files
- ~ 30-40 minutes to perform cholesky decomposition $F = LDL^{T}$

For 2 yrs of survey and 1 phot flat every 2 weeks

Compressing the fisher matrix information DESC

- Monte-Carlo inversion
 - Generate O(1000) realizations of the ubercal "residuals"
 - This can be done easily, because we have the cholesky factorization of F

$$R = \left(L^{-1}D^{-1/2}
ight)^T X$$
 with $X \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$

- With nside=1024, takes < 1-s per realization
- Then compute and stack
 - Diagonal errors
 - power spectrum
 - or correlation function

 $m_{\rm cal} - m_{\rm true}$

Preliminary results

- Ingredients
 - \circ cadence
 - Measurement error model :
 - assume 2 mmag / superpixel : shot noise + flat field error
 - Location + number of primary standards
 - No gaia-like catalog (for the moment)
- For 1 year of survey taken alone
 - AltSched-like cadences and Minion 1016 give solutions
 - "Feature" & "feature rolling" generally not well connected
- When combining together at least 2 years of survey
 - Problem is well behaved

Minion 1016

<< 1 mmag

Minion 1016

Feature baseline

Feature baseline

Feature rolling

Feature rolling

AltSched

AltSched

AltSched rolling

AltSched rolling

- With 2 years of survey
 - cadences proposed so far allow one to solve our ubercal-like problem, presented above
 - This is excellent news
 - -> all contributions to survey non-uniformity will be:
 - Instrument signature effects that vary faster than model
 - Chromatic effects that cannot be absorbed by a gray term
 - Pbs with outlier detections

Performing the fit explicitely

 $\hat{ heta} = (J^T W J)^{-1} J^T W y$

Solution (mags & ZP)

We have its LDLT decomposition already

measurements

• Plug in

- measurement systematics model
- Errors on instrumental effect removal
- See effect on calibrated magnitudes
- Preliminary exploration with gain variations:
 - \circ Assume monotonic gain variations along the night, up to 0.2%

Minion 1016

Minion 1016

AltSched

Feature baseline

Feature

35

Conclusion / work ahead

- We have a pipeline
 - that can absorb and produce results for all cadences (~8 hrs)
- Now plug in realistic model of
 - Realistic Calibration plan
 - frequency of flat field updates
 - Number of standards, location of standards
 - Instrument signature correction errors
 - Chromatic effects (atmosphere,)
- Go up in resolution (nside=2048 + down to amplifier scale)
- Simple modifications of cadence to rigidify the 1 yr solution
- GAIA