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Outline
• What is FGCM? 

• See Burke, Rykoff+17 http://adsabs.harvard.edu/
abs/2018AJ....155...41B and https://github.com/
erykoff/fgcm 

• Atmosphere and Instrumental Passbands 

• The FGCM Fitting Procedure 

• Calibration Errors 

• Implementation in LSST
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What is FGCM?
• The “Forward Global Calibration Method” 

• Solve the global calibration problem with a 
physical model of the atmosphere + instrument 

• Picking up on Stubbs & Tonry (2006) 
• Requires instrument throughput measurements 

• Given a set of atmospheric parameters at any 
given time (under photometric conditions) we can 
predict the atmospheric extinction as a function of 
wavelength 
• Also need to know object SED (see e.g., Li+16) 

• Once we know the atmospheric extinction, can 
predict fluxes of all the objects in an exposure
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What is FGCM?
• Two step process 
• Select exposures & stars suitable to obtain 

atmospheric model on nights of the survey 
• Multi-band solution 
• Assume atmospheric parameters vary slowly 

over the night 
• Calibration stars are used to fit the zeropoint for all 

exposures in survey 
• Include chromatic corrections 
• Add non-photometric exposures (with increased 

error!)
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Advantages of FGCM
• Forward model approach always leads to physically 

possible solutions 
• Allows physically-motivated non-linearities with 

airmass 
• No gray terms in the model means no runaway 

solutions 
• Uses full range of star colors — increase the s/n 

and this is useful information! 
• Instrumental transmission variations, plus possible 

evolution of passbands is properly incorporated 
• Works best with more overlap in time and space 

(like übercal), and multiple bands per night is very 
useful
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FGCM DES Y1-4
• FGCM paper (Burke++17) is based on DES Years 

1-3 
• Old, fragile code 
• Issues with mis-measured out-of-band 

throughput 
• Most result plots in this talk are from the newer 

solution incorporating DES Years 1-4 
• New, fancy, faster code 
• Better bandpass measurements 
• Avoid use of GPS water vapor 
• Aperture corrections and more!
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The Atmosphere Model
• Atmospheric transmission can be described with a 

small number of parameters 
• Precipitable water vapor (PWV) 
• Aerosol Optical Depth (AOD) τ and α 

• Ozone (O3) 
• Given zenith distance and barometric 

pressure, compute Rayleigh and O2 using 
MODTRAN
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3.2.3. Aerosol Absorption: e�(X⌧)

Scattering by aerosols can be more complex, but the corresponding optical depth for a

single particulate species is well-described with two parameters as,

⌧(�) = ⌧7750 ⇥ (�/7750 Å)�↵. (22)

The normalization ⌧7750 and optical index ↵ depend on the density, size, and shape of the

aerosol particulate.

Aerosol optical depth, like water vapor, can vary by several percent over hours, so the

calibration measurements and process must account for variations of this magnitude on

these timescales. The aerosol normalization ⌧7750 is parameterized in a manner similar to

the precipitable water vapor when there is no auxiliary data available, with a linear change

through the night as

⌧7750(exposure) = ⌧(nite) + ⌧s(nite)⇥ UT(exposure), (23)

where the intercept at UT = 0 (⌧(nite)) and slope (⌧s(nite)) are FGCM fit parameters.

For our present modeling, we assume that the aerosols on any given night are dominated

by a single species. Therefore, we require one value for the aerosol optical index (↵) for

each calibratable night.

3.2.4. Atmospheric Fit Parameters

Should I rewrite this in terms of the sub-parameters as well?

The vector of atmospheric parameters used to fit the observed DES data,

~P atm ⌘ (O3, pwv, ⌧7750,↵; bp, zd) (24)

S⌧ (�) = eX⌧(�)



Atmosphere Constituents
• The FGCM standard atmosphere model
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Fit Parameters
• PWV varies linearly through the night 

• Could/should add quadratic term 
• A single-constituent aerosol, with optical depth τ7750 

that varies linearly through the night, and single α 
per night 

• A single value for Ozone each night 
• Plus airmass and site-monitored barometric 

pressure
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Auxiliary Data
• Originally used PWV from GPS monitor (with 

additive/multiplicative biases) 
• Odd values, outliers, systematic problems led to 

worse performance 
• DES also has auxiliary aTmCam system 
• 4 narrow-band filters on 4 cameras 

• Continuously fit atmospheric parameters through 
night 

• Have not been able to use as an input to help 
calibration 
• aTmCam not as stable as DECam, and thus 

adds more noise than signal
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From ADUs to Fluxes
• The number of ADU depends on size of telescope, 

passband Sbobs and SED of source Fν(λ) 

• Normalizing to the AB scale yields 

• But what we really want is the magnitude through 
our “standard” atmosphere 

• See Fukugita+96, Lynne Jones, LSST Science 
Book, etc.
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same period of time.

• The FGCM calibration algorithm naturally incorporates data from auxiliary

instrumentation when it is available.

• The FGCM analysis provides su�cient definition to allow linearized corrections for

the slopes across the observational passbands of the Spectral Energy Distributions

(SEDs) of celestial sources (Li et al. 2016).

2. Broad-Band Photometry with Chromatic Corrections

A digital camera on a modern ground-based astronomical telescope will count a fraction

of the photons produced by a celestial source that reach the top of the earth’s atmosphere

(TOA). For broad-band observations, the digital count in the camera (ADU) produced by

a source is proportional to the integral of the TOA flux F⌫(�) from the source weighted by

the observational passband, Sb(x,y,alt,az,t,�),

ADUb =
A

g
⇥

Z �T

0

dt⇥
Z 1

0

F⌫(�)⇥ Sb(x,y,alt,az,t,�)⇥
d�

hP l�
, (1)

where A is the area of the telescope pupil, g is the electronic gain of the camera sensors

(electron/ADU), and �T is the duration of the exposure. The units of flux F⌫(�) are

ergs cm�2 s�1 Hz�1, and the factor (hP l�)�1d� counts the number of photons per unit energy

at a given wavelength (hP l is the Planck constant). The coordinates (x,y) are those of the

source image in the focal plane of the camera, (alt,az) are the altitude and azimuth of the

telescope pointing, and t is the time and date (MJD) of the observation. For convenience,

we refer to this position- and time-variable observational passband as:

Sobs
b (�) ⌘ Sb(x,y,alt,az,t,�). (2)
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We define an observed TOA magnitude of a celestial source as Fukugita et al. (1996),

mobs
b ⌘ �2.5 log10

✓R1
0 F⌫(�)⇥ Sobs

b (�)⇥ ��1d�R1
0 FAB ⇥ Sobs

b (�)⇥ ��1d�

◆
. (3)

With the measured ADU count from Eqn. 1 this becomes,

mobs
b = �2.5 log10

✓
g ⇥ ADUb

A⇥�T ⇥ FAB ⇥
R1
0 Sobs

b (�)⇥ (hP l�)�1d�

◆

= �2.5 log10(ADUb) + 2.5 log10(�T )

+ 2.5 log10

✓Z 1

0

Sobs
b (�)⇥ ��1d�

◆
+ ZPTAB

= �2.5 log10(ADUb) + 2.5 log10(�T ) + 2.5 log10(Iobs0 (b)) + ZPTAB,

(4)

where the value

ZPTAB = 2.5 log10

✓
AFAB

ghP l

◆

includes the AB flux normalization FAB = 3631 Jansky (1 Jy = 10�23 ergs cm�2 s�1 Hz�1)

(Oke & Gunn 1983), and Iobs0 is defined as the integral over the observational passband:

Iobs0 (b) ⌘
Z 1

0

Sobs
b (�)��1d�. (5)

The utility of Eqns. 3 and 4 is limited by the large variety of passbands that will be

encountered during the course of the DES campaign. Even if each passband is known,

proper scientific interpretation will depend on knowledge of the wavelength dependence of

the source SED. We seek a definition of a unique photometric quantity to associate with

each source that can be compared to other measurements and theoretical predictions, and

we seek a method to obtain this quantity from the DES campaign data.

Consider the broad-band magnitude that would be measured if the source were

observed through a “standard” passband that we choose at our convenience,

mSTD
b ⌘ �2.5 log10

✓R1
0 F⌫(�)⇥ SSTD

b (�)⇥ ��1d�R1
0 FAB ⇥ SSTD

b (�)⇥ ��1d�

◆
. (6)

mstd
b ⌘ �2.5 log10

 R1
0 F⌫(�)⇥ Sstd

b (�)⇥ ��1d�
R1
0 FAB ⇥ Sstd

b (�)⇥ ��1d�

!



To The Standard!
• The difference between the observed passband 

and the standard passband is: 

• With a normalization integral I0 

• This correction depends on SED (color) of object 
• Each individual observation has its own 

bandpass which must be corrected
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An Implementation Detail…
• All fits are performed with a linearized first-order 

approximation 
• Atmosphere + instrument transmissions are 

precomputed in a look-up-table (via MODTRAN) 
• Can run all of DES Y1-4 in ~24 hours on a 16 

core machine with 128Gb of RAM 
• Often shorter than the database 

query+download… 
• In the end, transmissions are computed for each 

exposure 
• Can be integrated with SN, galaxy, star SED 
• Linearized correction only really works with stars
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Chromatic Corrections
• Including instrumental and atmosphere effects, red 

histograms show the chromatic correction per 
exposure for stellar SEDs
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Instrumental Passband
• Instrumental effects (filter variations, anti-reflective 

coating differences, CCD QE differences) are as 
big or bigger than atmospheric effects 

• Require (at least) CCD-by-CCD scans 
• For DES from the “DECal” system 
• For LSST from the CBP
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Filters+CCDs
• From the DECal monochromatic scans 

• g band especially variable from chip to chip
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i band Radial Variation
• DECam i band filter has blue edge that varies with 

radius
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Mirror + Corrector Dust
• Dust accumulates on mirror and corrector 

• Mirror washing a few times a year 
• Mirror to be re-aluminized summer 2018
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The Fit
• Given atmospheric parameters and CCD response, 

correct each observation of each object from  
mobs → mstd 

• Compute average magnitudes of each object 

• Compute global χ2 

• Recent update to code which models σphot as a 
function of FWHM, sky brightness, and <mstd>

 19

mstd
b (j) =

P
i m

std
b (i, j)�phot(i, j)�2

P
i �

phot(i, j)�2

�2 =
X

(i,j)

⇣
mstd

b (i, j)�mstd
b (j)

⌘2

�phot(i, j)2



A Note on the Fit
• In our forward model formulation, we are not 

solving a system of linear equations 
• Use a non-linear solver 

(scipy.optimize.fmin_bfgs_b) 
• Requires computation of dχ2/dp for each parameter 

p 
• Solving for these parameters (~6 times the number 

of nights) is efficient 
• Note that we have poor constraints on 

unimportant parameters on certain nights (e.g. 
nights with only g, r band we can’t fit PWV well … 
nor do we need to)
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Chromatic Shifts
• To first order, the fit is sensitive to atmospheric 

extinction (I0) to different components of 
atmosphere 

• The fit is also sensitive to different color objects, 
and the response to different atmospheric 
components 
• PWV for DECam z and Y bands 
• Aerosols in g and r bands 
• Instrumental effects in all bands
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Water Vapor and z-band
• High PWV cuts the red end of the z band, so red 

and blue stars are shifted differently
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Water Vapor and Y-band
• High PWV cuts the blue end of the Y band, so red 

and blue stars shift the opposite way from z
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Airmass and g-band
• High and low airmass have different Rayleigh 

terms, and different chromatic response in g
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Photometric Selection
• As with any global calibration routine, a challenge 

is to select “photometric” observations 

• Anything that is consistent with model is 
photometric 
• Fainter than model is non-photometric 
• Forward model approach constrains to physical 

solutions 

• Fit model, reject non-photometric exposures, and 
refit
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Photometric Selection
• Make cut progressively tighter at each fit “cycle”

 26

mix of model noise  
and non-photometric 

observations

exposure avg. “gray” residual in i band



Atmosphere Fits
• Model parameters show  

seasonality 
• Alpha is noisy
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Water Vapor and z-band
• Before correction…
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Water Vapor and z-band
• After correction…
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Water Vapor Checks
• We can test the current performance of the FGCM 

model with GPS water vapor data
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Global and Exposure Fits

I1 is the linearized chromatic correction from fitR1
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Airmass/Color Terms
• FGCM predicts the color 

term as a function of 
airmass 
• It is not large! 
• But we do see it
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Checking for Throughput Errors



Checking for Throughput Errors (HSC)
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• HSC r-band: azimuthal  
dependence?



Checking for Throughput Errors (HSC)
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• Throughput in HSC r-band 
shows azimuthal dependence 
(especially at filter edges) 

• Currently, the transmission 
curve in DM stack assumes 
azimuthal symmetry
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HSC i and i2 bands

• Natively cross-calibrate i and i2 bands 
• No noticeable difference in statistics
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Chromatic Term from ModelChromatic Term from Model



Additional Model Parts
• Superstar Flats 

• Aperture Corrections 

• Temporal correlations 
• Not actually part of the model, but interesting
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SuperStar Flats
• DES has a starflat calculation (Bernstein++) 

• Computed in dense, dithered star fields 
• Overall linear term ambiguity, and no chromatic 

terms 
• In the wide-field survey we have many, many 

observations 
• Look for common modes.   

Currently ccd-by-ccd in  
DES, can fit 2nd  
order polynomial.
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Aperture Corrections
• With a forward model approach, can measure 

residuals that are not part of instrument/
atmosphere model 

• Fit linear model at the end of each fit cycle 
• Converges very rapidly 

• Matters to uniformity as different regions have 
different seeing  
distribution
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Temporal Correlations
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• There is an additional gray residual in observations 
taken within ~10-15 minutes 
• Beyond the model, if one observation is a bit dim 

the next one is likely to be as well 
• High altitude cirrus?



Calibration Errors
• Stability/Repeatability 

• If you return to an object 

• Uniformity 
• If you go to another point in the survey footprint 

• Chromatic 
• If you move to a different object SED
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Repeatability (griz)
• For all observations of all objects in the fit, what is 

the intrinsic RMS? 
• ~5-6 mmag 
• These are straight model residuals 
• Assume: each tiling  

is independent 
• Yields the variance of  

the parent distribution  
of the random errors 
of calibration fit 

• (δFGCM)2  
  ~ (5-6 mmag)2
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Repeatability (griz)
• For all observations of all objects in the fit, what is 

the intrinsic RMS? 
• ~4-7 mmag 
• These are straight model residuals 
• Assume: each tiling  

is independent 
• Yields the variance of  

the parent distribution  
of the random errors 
of calibration fit 

• (δFGCM)2  
  ~ (4-7 mmag)2
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Repeatability (griz)
• The very last step is the “CCD crunch” 

• A single gray ZP correction is applied to each 
CCD relative to the mean calibrated stars 

• Not part of the model 
• Yields local, final  

repeatability, but not  
true intrinsic model  
quality 

• (δFGCMcrunch)2  
  ~ (<3 mmag)2
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• We do not use Y band in our fit.  It is “dead-
reckoned” 

• We think we know the atmosphere from the other 
bands… do we?  (yes)

Repeatability (Y)

 45



Comparing to Gaia
• …see my other slides… 
• RMS of 3.1 mmag uniformity for rDES vs GDR2
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FGCM and the LSST Stack
• FGCM has been integrated with the LSST stack 

• So far not part of mainline distribution (will 
change soon) 

• Only works with HSC and obs_subaru so far 
(only package with transmission curve support) 

• A major limitation (currently) is collating all the star 
data 
• Each visit/ccd pair has a flat fits file that must be 

read in and good sources selected 
• This is not fast; database access in the future? 

• Outputs atmosphere transmissions per exposure, 
plus zeropoints
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LSST Baseline Plans
• Use spectrophotometry from Gaia to synthesize 

LSST griz as reference over large scales 
• u+y are still TBD 

• LSST jointcal to solve per-band gray extinction 
coefficients  
• AuxTel to supply atmosphere transmission for 

chromatic terms 
• Works on overlapping images on patches/tracts 
• Allows flexible polynomial fits for intra-CCD 

variation of throughput
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FGCM LSST Plans
• Originally thought of as useful for QA and 

redundancy 
• Might be able to solve current issues with jointcal 

photometry 
• Designed to incorporate auxiliary atmosphere data 

from instruments like AuxTel 
• Though DES performance is better without GPS 

or aTmCam 
• Require a very stable photometric telescope
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FGCM LSST To-Do
• Currently does not use any reference catalog 

information 
• Can be extended to make use of Gaia 

spectrophotometry 
• Some R&D here 

• Currently produces 1 zeropoint per CCD 
• Extension to higher order is possible 
• Need to ensure fits are valid
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Extra Slides
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Linear Approximation
• You should — if you can — integrate the 

corrections given Sbobs and SED of source Fν(λ) 
• This is impractical for fitting 

• Do a first-order expansion of the SED
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The di↵erence between this “standard” magnitude and a given observed magnitude is,

�STD
b ⌘ mSTD

b �mobs
b = 2.5 log10

✓R1
0 SSTD

b (�)⇥ ��1d�R1
0 Sobs

b (�)⇥ ��1d�

◆

+ 2.5 log10

✓ R1
0 F⌫(�)⇥ Sobs

b (�)⇥ ��1d�R1
0 F⌫(�)⇥ SSTD

b (�)⇥ ��1d�

◆

= 2.5 log10(ISTD
0 (b)/Iobs0 (b))

+ 2.5 log10

✓ R1
0 F⌫(�)⇥ Sobs

b (�)⇥ ��1d�R1
0 F⌫(�)⇥ SSTD

b (�)⇥ ��1d�

◆
,

(7)

where ISTD
0 is defined analogously to Eqn. 5 with the standard passband. Given knowledge

of the source SED and observational passband, this term is the full chromatic correction to

transform any source to the standard passband. Note that either in the case of a flat (AB)

SED, or when the observed passband is equal to the standard passband, the correction is

indentically zero.

In practice, the direct use of Eqn. 7 is challenging. First, we do not generally have

precise SEDs of all our photometrically-identified calibration stars. Second, and more

importantly, for the purposes of fitting model parameters the amount of computing required

to repeatedly perform the necessary integrations is impractical. Therefore, it is convenient

to make a first-order expansion of the SED of the source,

F⌫(�) = F⌫(�b) + F
0

⌫(�b)(�� �b), (8)

where

F
0

⌫(�) =
dF⌫(�b)

d�
, (9)

is the average slope of the SED across the passband. For convenience, we additionally

define the ratio

F 0

⌫(�b) ⌘ F
0

⌫(�b)/F⌫(�b). (10)

The reference wavelength �b is arbitrary, and we have defined it as the photon-weighted
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0 F⌫(�)⇥ SSTD

b (�)⇥ ��1d�

◆
,

(7)

where ISTD
0 is defined analogously to Eqn. 5 with the standard passband. Given knowledge

of the source SED and observational passband, this term is the full chromatic correction to

transform any source to the standard passband. Note that either in the case of a flat (AB)

SED, or when the observed passband is equal to the standard passband, the correction is

indentically zero.

In practice, the direct use of Eqn. 7 is challenging. First, we do not generally have

precise SEDs of all our photometrically-identified calibration stars. Second, and more

importantly, for the purposes of fitting model parameters the amount of computing required

to repeatedly perform the necessary integrations is impractical. Therefore, it is convenient

to make a first-order expansion of the SED of the source,

F⌫(�) = F⌫(�b) + F
0

⌫(�b)(�� �b), (8)

where

F
0

⌫(�) =
dF⌫(�b)

d�
, (9)

is the average slope of the SED across the passband. For convenience, we additionally

define the ratio

F 0

⌫(�b) ⌘ F
0

⌫(�b)/F⌫(�b). (10)

The reference wavelength �b is arbitrary, and we have defined it as the photon-weighted



Linear Approximation
• Substituting in, the correction factor is now: 

• And the corrected magnitude is
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4.2. The FGCM Fit

The FGCM fitting step minimizes the weighted dispersion of repeated measurements

of the mSTD
b magnitudes of calibration stars (c.f. Eqn. 15),

�2 =
X

(i,j)

⇣
mSTD

b (i,j)�mSTD
b (j)

⌘2

�phot(i,j)2 + (�phot
0 )2

, (25)

where the summation is over all calibration objects j found on all calibration exposures i.

The error-weighted means of the calibrated magnitudes mSTD
b (i,j) of each calibration star j,

mSTD
b (j) =

P
i m

STD
b (i,j)�phot(i,j)�2

P
i �

phot(i,j)�2
, (26)

are taken as the best estimates of the true standard magnitudes. The statistical

photometric errors �phot(i,j) in these formulae are computed by DESDM from source

and background ADU counts, and the parameter �phot
0 = 0.003 is introduced to control

possible underestimates of the errors assigned to the brightest objects. The SciPy bounded

fitting routine FMIN L BFGS B5 is used to minimize the �2 with the function value and

derivatives with respect to all fit parameters explicitly computed.

The FGCM parameter vectors do not include any model of extinction by cloud cover;

a detailed fit of cloud structure across the DECam field of view might be done (Burke, op

cit), but was not attempted for the DES Y3A1 release. So key to the FGCM fitting process

is the ability to isolate a set of exposures free of clouds, or “photometric”. To do this, the

residual of each measurement i of the magnitude of each calibration star j is computed

using the parameter vectors from the most recent fit cycle,

Egray(i,j) ⌘ mSTD
b (j)�mSTD

b (i,j). (27)

5http://github.com/scipy/scipy/blob/v0.14.0/scipy/optimize/lbfgsb.py#L47
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mean wavelength of the instrumental passband,

�b ⌘
R1
0 �⇥ Sinst

b (�)⇥ ��1d�R1
0 Sinst

b (�)⇥ ��1d�
, (11)

where Sinst
b is the focal-plane average instrumental system response (see Eqn. 17) excluding

the atmosphere. Then we find,

�STD
b ⇡ 2.5 log10(ISTD

0 /Iobs0 )

+ 2.5 log10

 R1
0 (1 + F 0

⌫(�b)⇥ (�� �b))⇥ Sobs
b (�)⇥ ��1d�R1

0 (1 + F 0
⌫(�b)⇥ (�� �b))⇥ SSTD

b (�)⇥ ��1d�

!
.

(12)

We define an I1 integral similar to Eqn. 5,

Iobs1 (b) ⌘
Z 1

0

Sobs
b (�)(�� �b)�

�1d�, (13)

with a similar definition for the corresponding integral over the standard passband. It is

also convenient to define the “normalized chromatic passband integral”,

Iobs10 (b) ⌘ Iobs1 (b)

Iobs0 (b)
. (14)

Combining Eqn. 4 with Eqn. 12 we find,

mSTD
b =� 2.5 log10(ADU) + 2.5 log10(�T ) + 2.5 log10(Iobs0 )

+ 2.5 log10

✓
1 + F 0

⌫(�b)Iobs10 (b)

1 + F 0
⌫(�b)ISTD

10 (b)

◆
+ ZPTAB.

(15)

The measured standard magnitude is determined by an “instrumental magnitude” given

by raw ADU counts and exposure time, the integral of the observational passband, and

a “chromatic correction.” As mentioned above, the linearized approximation is made for

speed and computability in the model fit, but it not required in general if the full SED

of the source and passband are known. Since the chromatic correction will be zero if

the observing passband is the standard passband, it is advantageous to choose standard

passbands that are those most often encountered during the survey. The correction will also
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Water Vapor & z-band
• The water vapor cuts off the red end of the DECam 
z-band 
• Much less so the LSST z-band, and very much 

the blue end of the LSST y-band
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Water Vapor and z-band
• Before any chromatic correction, there is a PWV-

dependent color term
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How to Model PWV
• In the current FGCM model, the precipitable water 

vapor has an intercept and slope per night 
• Signal primarily in z-band 
• Affects overall throughput (extinction) and color 
• Extinction could be due to aerosols, non-

photometricity, etc, while color effect is 
unambiguous 

• Can we model PWV directly from the color shifts? 
(This is what I call the “Lupton Dream”) 

• Note that PWV primarily affects z-band, and so we 
only really need to model it for z-band!
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Testing the FGCM Model
• First, we can test the current performance of the 

FGCM model with GPS water vapor data
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Testing the Color Terms
• Next, looking at the nightly average FGCM flux-

color term 
• This “retrieved” quantity (R1) is not part of the 

model, but is a post-processing diagnostic
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Inverting R1
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• We can invert R1 to get a “retrieved PWV” from the 
required color corrections to the data 
• Correlates well with GPS PWV



Intra-Night Variability
• The RPWV value can vary a lot through the night
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RPWV and GPS
• RPWV correlates with GPS 
• Though still a lot of scatter even after smoothing 
• Noise in the GPS measurements or other offsets?

 61



FGCM Flowchart
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with ≥ 2 griz obs.
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with ≥ 600 stars

Calibration Nights
with ≥ 10 cal. exp.
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