

Laboratoire de Physique Subatomique et de Cosmologie

Gravitation en laboratoire

Quelques exemples d'expériences

Benoit Clément

Université Grenoble Alpes

Laboratoire de Physique Subatomique et de Cosmologie

1. Motivations

2. Les balances de torsions

3. Neutrons bondissant

4. Antihydrogène

La Gravitation

Champ faibleChamp fortTest en laboratoire
-classique : pendule de torsion
-quantique : neutrons bondissant
-les deux : anti-hydrogèneGravitation
quantique ???

Echelle astro

Gravitation newtonienne

Relativité Générale

Universalité de la chute libre

David Scott sur la lune en 1971(Apollo 15)

Les masses

Masse grave m_g : « charge » de l'interaction gravitationnelle : $\vec{F} = \frac{Gm_{g1}m_{g2}}{r_{12}^2}$, $V = m_g gz$ Masse inertielle m_i : invariance de Lorentz, énergie cinétique : $E_k = \frac{m_i v^2}{2}$, $m_i^2 c^4 = E^2 - p^2 c^2$

Relativité générale :

Il est impossible de différencier la pesanteur de la chute libre dans un référentiel inertiel

 $m_i = m_g$

Principe d'équivalence faible

Conséquence : on ne peut pas mesurer la masse d'un objet qui tombe

La masse est indépendante de la composition d'un objet

Interprétation des résultats

Si une violation du principe d'équivalence faible est observée :

- soit ce principe est faux :
- soit les forces sont mal estimées :
 - modification de la gravité à courte portée
 - 5^{ème} force, type « Yukawa » : $V = \alpha e^{-\frac{x}{r}}$

Comment aller sonder à des échelles plus petite ?

Modèle Caméléon [Khoury & Weltman PRD 69 (2004)] $\varphi(z) \approx \frac{m_n}{M_{pl}} \Lambda \left(\frac{\Lambda z}{\hbar c}\right)^{2/(2+n)}$ $\frac{\hbar c}{\Lambda} = 82 \mu m$

Modèle d'energie sombre : nouvelle force

- couplage faible dans les milieux denses

- couplage fort dans le vide

L'expérience de Cavendish (1798)

Balance de torsion :

Système rigide suspendu à un fil Déviation angulaire : bilan des forces/accélérations transverses non nul

Masses M source, fixes Masses m sonde, mobile dans le plan

A l'équilibre :

compensation en torsion et gravité :

Petites fluctuations :

$$\theta_{eq} = \frac{GM}{Ld^2\omega^2} \qquad \omega^2 = \frac{C}{2mL^2} - \frac{2GM}{d^3}$$

oscillations amorties

Position d'équilibre + période d'oscillation => Mesure de G Masses de 10kg et 100g séparées de 20 cm, fil de Tungstène de 50 um : $\theta_{eq} = 10m$ rad

Première mesure par Cavendish en **1798** : $G = 6.75 \times 10^{-11} Nm^2 kg^{-2}$ Aujourd'hui (PDG) $G = 6.67408 (31) \times 10^{-11} Nm^2 kg^{-2}$

Rem : précision actuelle
$$\frac{\Delta G}{G} \approx 5 \times 10^{-5}$$

Version améliorée

Depuis 1980 : expérience Eöt-Wash (CENPA/University of Washington)

Améliorer la symétrie du dispositif pour réduire les effets multipolaires

Fil de tungstène de 20 μ m , 1m de long

8 masses tests de 4.84 g (4 Be & 4 Ti) ou (4 Be & 4 Al)

Miroirs+Laser pour mesurer le couple

Aujourd'hui (2012)
$$\frac{m_g}{m_i} - 1 < 10^{-12}$$

Environnement controlé

Forces de Yukawa

Source(s) de la force de Yukawa

 $0.5m<\lambda<5m$ le labo lui même (murs, équipement) $1m<\lambda<50km$ topographie $5km<\lambda<1000km$ Variations de denisté de la coute terrestre $1000km<\lambda<1000km$ Modèle de la terre PREM

Chute libre classique

$$m_i \vec{a} = m_g \vec{g} \Rightarrow \vec{z} = \frac{m_g}{m_i} g$$

Chute libre quantique

Rebond quantique

Rebond sur un miroir : les conditions aux limites quantifient les énergies E_k

$$\psi(z) = C_a Ai\left(\frac{z}{z_0} - \epsilon_k\right) + C_b Bi\left(\frac{z}{z_0} - \epsilon_k\right)$$

 $\psi(z < 0) = 0, \quad \int_0^{+\infty} \psi(z) dz = 1 \Rightarrow \lim_{z \to \infty} \psi(z) = 0 \Rightarrow K_b = 0$

 $\psi(0) = 0 \Rightarrow Ai(-\epsilon_k) = 0$: Energies sont données par les zero de la fonction d'Airy ξ_k

Application au neutron

Energies quantifiées : GRANIT mesure les transitions entre niveaux

Fonction d'onde : forme, position des noeuds.

Découverte des états quantiques

[Nesvizhevsky *et al* Nature 415 (2002)] [Nesvizhevsky *et al* EPJC 40 (2005)]

Violation de l'universalité de la chute libre

Extension de la fonction d'onde :

Masse inertielle vs Masse grave

Forces de courte portée

Interaction de portée micrométrique

Dilatation du spectre en énergie

Contraction des fonctions d'onde :

Potentiel : $V(z) = mgz + \beta \varphi(z)$

Potentiel de Fermi

Si $\lambda \gg distance interatomique$: diffusion cohérente sur les noyaux

Reflexion si $E_{kin} \cos \theta < V_{fermi}$

Pour $E_{kin} < V_{fermi}$ reflexion à toutes incidences

Material	Fermi potential (neV)	Free path at 100 neV (μm)
Titanium	-50.1	57.1
Boron 10	-6.7	0.04
Helium II	18.5	+∞ (if no ³ He)
Boron 11	225.6	-
Aluminum	54.1	1400
Copper	170.1	-
Fomblin oil	106.5	-
Stainless steel	~190	-
Beryllium	250.8	-
BeO	256.5	-

Neutrons ultra froid (UCN)

Neutrons à 4m/s dans une boite d'50cm de coté

v ~ 5-10 m/s

Il est possible :

de stocker les UCNs pendant plusieurs centaines de sec.

E~100-200 neV

de guider ces UCN avec de simples tuyaux.

Ces UCNs sont sensibles à la gravité :

 $m_n g x (1m) = 100 neV$

UCN et interactions fondamentales

Les UCN ressentent les 4 interactions faiblement, mais sensiblement

Modification de la gravité à courte distance ? Recherche d'une cinquième interaction ?

Puit et barrière

Neutron : onde plane exp(ikx)

Si k²/2m = E > V : onde transmise $exp(i (k - \sqrt{2mV})x \text{ et onde réfléchie})$

Detecter des UCN

Détecteur gazeux : Potentiel de la fenêtre d'entrée 0.8 Transmission moyenne 0,6 0.4 0.2 TiA Al -----C 50 100 150 200 250 n Energie (neV)

Détecteur solide (Silicium) : potentiel de la couche de conversion ${}^{6}\text{Li}: V_{f} = 28 \text{ neV}$ ${}^{10}\text{B}: V_{f} = -3 \text{ neV}$ (20% de B naturel) Dépôt directement sur la surface active du detecteur

Institut Laue-Langevin

Cafétaria

Fabriquer des UCNs

Mécanique : Gravité plus turbine

Superthermale : Interaction entre neutron et l'hélium superfluide à 0.8K

Source ⁴He

Taux de production

$$N_{\rm He} 4\pi b^2 \alpha^2 \left[\int \frac{d\Phi(k_1)}{dE} S\left(k_1, \omega = \frac{\alpha k_1^2}{2}\right) dk_1 \right] \frac{k_c^3}{3} \, \rm UCN \, \rm cm^{-3} \, \rm s^{-1}$$

Le spectromètre

- Sélectionner les neutrons de vitesse verticale nulle : fente semi-diffusive
- Supprimer les états quantiques 1 à X : marche
- Supprimer les états quantiques Y à l'infini : absorbeur mobile

Le spectromètre

- Sélectionner les neutrons de vitesse verticale nulle : fente semi-diffusive
- Supprimer les états quantiques 1 à X : marche
- Supprimer les états quantiques Y à l'infini : absorbeur mobile

Moteurs Piezoélectriques: - marche (x3) - absorbeur (x3)

Déplacement relatif : 0.5 μm Position absolue : 2 μm Horizontalité : 10 μrad

Absorbeur rugueux

Escobar et al., Adv. in HEP, 2014

Rugosité : up scattering $|i\rangle \rightarrow |j\rangle$: j>>i , transfert d'impulsion de k, vers k,

Transmission d'un état $|i\rangle$ dépend de : la rugosité de l'absorbeur : φ la vitesse du neutron : V la longueur de l'absorbeur : L la probabilité de présence au niveau de l'absorbeur

Pour induire une transition

Force verticale ocillante

Exitation mécanique

Jenke et al, Phys. Rev. Lett. 112 (2014)

Excitation magnetique

Coupleur gravito-magnétique

- 4 Magnetic field generator modules assembled and connected together
- 128 wires, 1mm² square section Gap between wires : 0.25 mm
- Cooled by gaseous N2

Quelques photos

Spectromètre GRANIT

Mesures des fonctions d'onde

Détecteur UCNBox

UCN Boron piXels :

- CCD sans fenêtres
- couche de conversion : 200 nm de $^{\rm 10}{\rm B}$
- 2048x64 pixels, 14x14 μm

- 8 capteurs pour couvrir 30cm (20cm utiles)

Barycentre des cluster selon la direction du fil Résolution spatiale ~ 1µm

Résolution spatiale

а.

positio

Particules alpha reconstruites 6µm tungsten wire

0 5 10 15 distance from the center of the wire $[\mu m]$

Qualité de la couche de bore

Fente de 50 µm, éclairée par des neutrons froids

Gravitation de l'antimatière

L'antimatière subit-elle une gravitation répulsive ?

A priori non : essentiel de la masse d'un antiatome vient de l'énergie de liaison QCD

Mais il est possible que la chute libre soit différente pour les quarks de valence

Collaboration Alpha :
$$\frac{m_i}{m_g} - 1 < 110$$

Deux projets au CERN : GBar et AEGIS Participation française dans les deux

Principe de la mesure

Fabrication de l'antihydrogène

H⁺ production via two step charge exchange reactions:

1) $Ps + \bar{p} \rightarrow \bar{H} + e^-$ 2) $Ps + \bar{H} \rightarrow \bar{H}^+ + e^-$

EXP. H: J. P. Merrison et al. Phys. Rev. Lett. 78, 2728 (1997). EXP. H: A . Speck et al., Phys. Lett. B597, 257 (2004).

TH. H⁺: P. Comini and P.-A. Hervieux, New J. Phys. 15, 095022 (2013)

Fabrication de l'antihydrogène

2018 : Premiers antiprotons délivrés par l'accélérateur ELENA

Installation et tests pendant le shut-down LHC 2019-2021

Différents systèmes permettent de sonder la gravitation en laboratoire, à courte distance

Test du principe d'équivalence ou Recherche de 5eme force

- Systèmes classiques :

Chute dans le vide Balances de torsion Sala

- Systèmes quantiques

Neutron ultrafroids Antihydrogène Positronium

- Antimatière

