

TARGET STATION FACILITY SAFETY ASPECTS

ESSNUSB WORKING GROUP SESSION
ESSNUSB WP4 / EURONUNET WG2 - TARGET STATION

TARGET STATION FACILITY - GLOBAL WORKING PLANS

Target Station Facility Sub-Systems

Target Station

- Target + integration
- Horn
- Four Horn Support
- Proton Beam extraction

Power Supply System

- Target Station
- Power Supply Unit
- Cooling System
- Stripline Connection

Fluid System

- Closed cooling Fluid (Helium gas, Water)
- Radioactive Effluents
- Confinement System

Handling and Logistic

- Active Cell
- Casks
- Remote Handling

TARGET STATION FACILITY - GLOBAL WORKING PLANS

Target Station Facility Sub-Systems

Target Station

- Target + integration
- Horn
- Four Horn Support
- Proton Beam extraction

Power Supply System

- Target Station
- Power Supply Unit
- Cooling System
- Stripline Connection

Fluid System

- Closed cooling Fluid (Helium gas, Water)
- Radioactive Effluents
- Confinement System

Handling and Logistic

- Active Cell
- Casks
- Remote Handling

- Safety : Preparation Phase ⇔ Design Study
 - Non-radiological risks
 - Electrical risk, cooling system, maintenance operation....
 - Earthquake
 - Radiological risks
 - Determine the radiological risks (external or internal contamination) for each part of the facility.
 - Investigate biological protections with respect to the prompt dose and residual dose
 - Environnemental impact studies (Tritium, 22Na,..)

E. BAUSSAN 08/11/2018

TARGET STATION FACILITY - GLOBAL WORKING PLANS

ALARA Approach:

As Low As Reasonably Achievable

Feedback from previous experiments is crucial

Building "rooms"

- Open Top geometry for the Target Station Room, Decay Tunnel, Beam Dump
- Hot Cell (Repair Target Station elements)
- Morgue (Store radioactive wastes)
- Horn Power Supply Room , Power supply outside of the main building ?
- => Energy Deposition and Dose Rate Estimation with FLUKA Simulation

E. BAUSSAN 08/11/2018

TARGET STATION FACILITY

Building Structure:

Proton Driver line Experimental Hall Control Room **MW Target Station** Main Hall **Decay Tunnel** Office Space Truck unloading area Pump **Beam Dump** House **Maintenance Room Service Gallery** Hot cell operator room **Power supply** Hot cell **Cooling system** Beam dump building here Morgue Beam Direction Horns and **Air-Ventilation system** collimators

Waste Area

TARGET STATION FACILITY

MW Target Station:

- Focusing System
- Crane System
- Automated robot
- Mechanical structure for the for horn
- Dose Rate Monitoring System
- Residual Dose Rate Plateform
- Operation under helium Atmosphere Morgue
 - flushing with air
 - filter to measure radioactive pollution (dust, tritium ...)
- Investigation of other radionucleides transport (environmental constraint)
- •

Non Radiological Risks

E. BAUSSAN

TARGET STATION

Four horns station:

- Solid Static target (Titanium)
- Use multiple 4 targets+ horns
- Beam frequency 56 Hz
- Cooling
- Power distribution due to Joule losses & secondary particles
- Energy balance, to maintain working temperature
- Flow rate
- Jet distribution along the outer conductor
- h correlation for jets' geometry

TARGET STATION

- Recommandations from others facilities:
 - Cracks in welds
 - Use flexible pipes to reduce stress and fatigue
 - Water leaks due to galvanic corrosion => avoid trapped water and choose material carefully
 - Use semi flexible conductor because of important magnetic force between stripline
 => can break cable
 - Heat dissipation of the stripline
 - Remote design for repairing/exchange
 - Need Spares

Striplines plate with soft transition

HORN INVESTIGATION FAILURES

Failure	Causes	Consequences	Solution	Action/Safety
Cracks, weld junction	Material faults In the weld junction	Water leaks Current discontinuity	Check quality of weld junctions	Electrical shutdown Water flow shutdown
Cracks in the aluminium all, pipes connections	Peak stress too high	Water leaks Large displacement Crack growth Horn destruction	Stress analysis of the pipes connections; Of the details connections	Electrical shutdown Water flow shutdown
Cracks in the aluminium wall	High cyclic stress Fatigue cracks	Water leaks Large displacement Crack growth	R&D studies	Electrical shutdown Water flow shutdown
Striplines/horn connection cracks	Localised high cyclic Stress Corrosion Fatigue cracks	Electrical discontinuity Change in the magnetic field	R&D studies in the stripline horn/connection	Electrical shutdown Water flow shutdown
Striplines/connections Cracks initiation	Stress corrosion	Electric resistance increase	R&D studies	Electrical shutdown

COMPLEMENTARY INFRASCTURURE (FEEDBACK)

SPL Cooling system:

*Schematic diagram of the main cooling plant

Conceptual design of the SPL II, A high-power superconducting H- linac at CERN – CERN-2006-006 - 12 July 2006

·	ΔT	Power	ΔP	Flow rate
	[K]	[MW]	[bar]	$[m^3/h]$
Primary cooling SPL	9	16.8	5	1600
Cryo-compressors	5.7	4.0	5	600

Item	Fluid	Power	P_{max} ΔT		Flow rate
		[kW]	[bar]	[K]	$[m^3/h]$
Klystron	Demineralized water	11000	8.5	7.5	1300
RF loads	Demineralized water	4500	8.5	20	200
RT cavities	Demineralized water	800	8.5	10	70
Magnets (quadrupole)	Demineralized water	100	12	15	6
Magnets (bending)	Demineralized water	300	12	15	17
Dump linac	Demineralized water	100	12	15	6

Complementary plants needed for

- cooling the 4 horns, decay tunnel and beam dump
- cooling and recirculating helium inside the vessel

IPAC'17 Proceedings: E. Bouquerel et al, "Energy deposition and activation studies of the ESSnuSB Horn Station", MOPIK029

COMPLEMENTARY INFRASCTURURE (FEEDBACK)

POWER SUPPLY:

Conceptual design of the SPL II, A high-power superconducting H- linac at CERN - CERN-2006-006 - 12 July 2006

Fig. 5.9: Layout of CERN's standard 66/18 kV substation

Complementary plants needed for the super beam infrastruture

- alimentation station for the horns
- air conditioning installation

Load	4 MW neutrino baseline	5 MW EURISOL baseline
RF system [†]	20.2	24.4
Cryogenics	3.6	4.4
Cooling and ventilation	4	4
Other	1	1
General services (surface + tunnel), racks, computers, controls	3	3
Total	32	37

E. BAUSSAN 08/11/2018 13

Radiological Risks

TARGET STATION FACILITY

Chemical composition of Material*:

Target => Ti(100%)

Horn => Anticorodal 110 alloy Al (95.5%), Si(1,3%), Mg(1,2%), Cr(0.2%), Mn(1%), Fe (0.5%), Zn(0.2%), Cu(0.1%)

Decay Pipe => Steel P355NH Fe(96.8%), Mn(1.65%), Si(0.5%), Cr(0.3%), Ni(0.3%), C(0.2%)

Tunnel => Concrete O(52.9%), Si(33.7%), Ca(4.4%), Al(3,49%), Na(1,6%), Fe(1.4%), K(1,3%), H(1%), Mn(0.2%), C(0.01%)

Surrounding Environment => Molasse O(49%), Si(20%), Ca,(9.7%), Al(6.4%), C(5%), Fe(3.9%), Mg(3.2%), K(1%), Na(0.5%), Mn(0.1%)

Four horn station layout

*TO BE UPDATE FOR ESSNUSB

Beam Features

- Proton Energy: 4.5 GeV/c

- Intensity : 5.55 10⁺¹⁵ pps

- Irradiation time: 200 days

Target:

- Material : Titanium

- Density : 3.g/cm3

- Cylinder : 78 cm x 30mm

Horn:

- Material : Anticorodal 110

Activation Target + 4-Horns:

- Targets
- Horns
- Lateral Iron shield
- Lateral Concrete
- ⇒ Activation Study performed under FLUKA 2011.2.3

Evolution of the target activity with cooling time:

Evolution of the horn activity with cooling time:

18

Radionucleides in main horn (Cooling times 1 day) after 200 days of running:

Radionucleide s	T _{1/2}	Spec. Avt Bq/g	Vol. Act Bq/cm ³
⁷ Be	53.22 d	2.37E+07	6.5201e+12
²⁴ Na	14,96 h	2.31E+07	6.3366e+12
²² Na	2,6 y	6.39E+06	1.7549e+12
³ H	12.312 y	5.31E+06	1.4582e+12

Four Horns System

Top Right Horn Irradiated at 1MW

Activation Levels in the main Horn (1MW)

Evolution of the horn activity with cooling time:

RADIATION LAYOUT FROM EURONU

Simulation Parameters:

Beam Power : 4MW

Irradiation Times : 200 days

One Horn : Geometry Updated Cooling times : 1d,1w,1m, 6m,1y, 10y

Chemical composition of Material:

Target => Titanium

Horn => Anticorodal 110 alloy Al (95.5%), Si(1,3%), Mg(1,2%), Cr(0.2%), Mn(1%), Fe (0.5%), Zn(0.2%), Cu(0.1%)

Decay Pipe => Steel P355NH Fe(96.8%), Mn(1.65%), Si(0.5%), Cr(0.3%), Ni(0.3%), C(0.2%)

Tunnel => Concrete O(52.9%), Si(33.7%), Ca(4.4%), Al(3,49%), Na(1,6%), Fe(1.4%), K(1,3%), H(1%), Mn(0.2%), C(0.01%)

Radiation layout

Scoring Region: [-200,200]x[-200,200] [-500,500], cell dimension 20cm*20cm*20cm

DOSE EQUIVALENT RATE (ALL LAYOUT)

After 1day

After 1 week

DOSE EQUIVALENT RATE CONTRIBUTION (COOLING TIME 1D)

Target Contribution

DOSE EQUIVALENT RATE CONTRIBUTION (COOLING TIME 1D)

DER Contribution to the dose at 60cm

Fluka parameter Inputs:

=> Increase statistics

Proton Energy : 4.5 Gev

Beam Intensity: 5.56*10¹⁵ protons

Irradiation times: 200 days

First Step : 10000 Histories Second Step : 2000000 Histories

DER Evolution with distance

Distance (cm)	All	Target	Horn	Vessel	Tunnel*
60	554400	469800	38304	21722.4	82.152
100	240948	213660	15933.6	20746.8	3664.8
140	157716	123372	11300.4	18478.8	418.32

*Vessel act as a shield

DER Estimation mSv/h

NUCLEAR WASTE MANAGEMENT

IAEA Waste Classification:

- HLW High Level Wastes
 - Highly Radioactive liquid
 - Heat Generating (>2kw/m3)
- LILW Low and Intermediate Wastes
 - LL Long Lived,
 - 'Half-life > 30 years
 - Long lived alpha emitters >400Bq/g average
 - >4000Bq/g individual package
 - SL Short Lived
 - Half-life <30 years
- EW Exempted Wastes

Clearance Index :
$$CI = \sum_{i}^{Radionicleide} \frac{A_i}{L_i}$$

Classification of Radioactive Waste – Safety Series No 111-G-1.1

ENVIRONMENTAL IMPACT

of all the radionuclide's created ²² Na and tritium could represent a hazard by contaminating the ground water. Limits in activity after 1y=200days of beam:

Outline

- Adapt Study with ESSnuSB Parameters
- Feedback from other experiments crucial !!!
 - Regular meeting with ESS people in charge of the safety should be organized
 - Safety Meeting between Safety people has been organized at CERN during EUROnu and should be renewed