

Sub-GeV neutrino interactions

Marco Roda mroda@liverpool.ac.uk marco@genie-mc.org

on behalf of GENIE collaboration

University of Liverpool

7-8 November 2018 ESSnuSB meeting Strasbourg

ESSnuSB beam and targets

- Neutrinos: ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , $\bar{\nu}_{e}$
- Target: polystyrene and paraterphenyl
 - Carbon and hydrogen
 - We already have data for these targets!
- Main topologies
 - 0π for ν_{μ} and $\bar{\nu}_{\mu}$
 - 0π and 1π for ν_e and $\bar{\nu}_e$
- ⇒ Relevant models
 - Main interaction types
 - Quasi-Elastic
 - 2p2h
 - Resonant
 - Diffractive
 - FSI

ESSnuSB beam and targets

- Neutrinos: ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , $\bar{\nu}_{e}$
- Target: polystyrene and paraterphenyl
 - Carbon and hydrogen
 - ⇒ We already have data for these targets!
- Main topologies
 - 0π for ν_{μ} and $\bar{\nu}_{\mu}$
 - 0π and 1π for ν_e and $\bar{\nu}_e$
- ⇒ Relevant models
 - Main interaction types
 - Quasi-Elastic
 - 2p2h
 - Resonant
 - Diffractive
 - FSI
- → Outline
 - Intro: generators, data, nuclear physics
 - 0π and 1π
 - Comparisons with data

Neutrino MC generators: our vision

- Connect neutrino fluxes and observables
 - event topologies and kinematics
- Good generators
 - optimal coverage of physics processes
 - Uncertainty validation
 - Tune the *physics* models
- Specific requirements for experiments
 - fast enough for MC analyses
 - being able to prove the validity of a configuration
 - ⇒ Simple models can be perfectly acceptable
- ⇒ Tuning is difficult CPU time
 - ⇒ Unprecedented systematic tuning program

Neutrino MC generators: our vision

- Connect neutrino fluxes and observables
 - event topologies and kinematics
- Good generators
 - optimal coverage of physics processes
 - Uncertainty validation
 - Tune the physics models
- Specific requirements for experiments
 - fast enough for MC analyses
 - being able to prove the validity of a configuration
 - ⇒ Simple models can be perfectly acceptable
- ⇒ Tuning is difficult CPU time
 - ⇒ Unprecedented systematic tuning program

We don't believe in a *perfect theory* approach

- There are always things that need to be derived from measurements
- ⇒ Dealing with errors is unavoidable

Role of generators

Roles of generators in oscillation physics

- Compare data and models
 - Reliability and validity region
 - ⇒ You cannot study oscillations without fully understood models
- Compare dataset against dataset
 - Data quality and data sources are increasing ⇒ tensions
 - ⇒ joint analyses
 - ⇒ comparing results from different experiments
- Global fits
 - A generator is the ideal place for global fits
 - Controls the model implementation
 - Finding the best parameters
 - Cross Section priors based on data
- Feedback for experiments
 - Drive the format of cross section releases
 - Hint toward key measurements

GENIE - www.genie-mc.org

GENIE Collaboration

Luis Alvarez Ruso⁸, Costas Andreopoulos^{2,5}, Christopher Barry², Francis Bench², Steve Dennis², Steve Dytman³, Hugh Gallagher⁷, Steven Gardiner¹, Walter Giele¹, Robert Hatcher¹, Libo Jiang³, Rhiannon Jones², Igor Kakorin⁴, Konstantin Kuzmin⁴, Anselmo Meregaglia⁶, Donna Naples³, Vadim Naumov⁴ Gabriel Perdue¹, Marco Roda², Jeremy Wolcott⁷, Júlia Tena Vidal², Julia Yarba¹

[Faculty, Postdocs, PhD students]

- 1 Fermi National Accelerator Laboratory, 2 University of Liverpool, 3 University of Pittsburgh, 4 JINR Dubna,
- 5 STFC Rutherford Appleton Laboratory, 6 CENBG Université de Bordeaux, 7 Tufts University, 8 Valencia University

Core GENIE mission - from GENIE by-law

- Framework "... provide a state-of-the-art neutrino MC generator for the world experimental neutrino community ..."
- Universality "... simulate all processes for all neutrino species and nuclear targets, from MeV to PeV energy scales ..."
 - Global fit "... perform global fits to neutrino, charged-lepton and hadron scattering data and provide global neutrino interaction model tunes ..."

ESSnuSB Generators for experiments O Senignorm Senignorm Generators for experiments O Senignorm Senig

Calculation factorisation

Overview

- no complete theory of neutrino scattering on hadrons
- ⇒ Factorisation is required
 - the initial nuclear state dynamics
 - cross-sections at the neutrino-nucleon level
 a model of how to sum-up the nucleon-level contributions
 - hadronization Pythia 6
 - intranuclear hadron transport
 - GENIE-grown models

- GENIE design allows multiple combinations of models
 - Multiple choices available for each interaction as well

Status overview

- Well established generator
 - Used by many experiments around the world
 - Fermilab experiments are driving the momentum
 - Lot of interest from LAr experiments
- Two main efforts
 - Model development
 - Mostly happen during the latest releases of GENIE v2
 - growing interest from theorists wanting to supply new models
 - Tuning
 - ⇒ Entering the tuning phase
- The new release v3
 - Interface with the developments
 - ⇒ Tunes against public datasets
 - ⇒ Easy way to share configurations
 - Experiments can propose their own configuration for others to use

Models

Models

- Steady introduction as alternate models
- Many thanks to all who contributed
 - more detailed list in backup
- List of most interesting physics introduction:
 - Valencia complete QE+MEC+LFG model
 - Berger-Sehgal resonance model+MiniBooNE form factors
 - Berger-Sehgal coherent model + updated Rein-Sehgal coherent
 - Single kaon production of Athar et al.
 - New cascade FSI model with medium corrections for pions and nucleons

Models

Models

- Steady introduction as alternate models
- Many thanks to all who contributed
 - more detailed list in backup
- List of most interesting physics introduction:
 - Valencia complete QE+MEC+LFG model
 - Berger-Sehgal resonance model+MiniBooNE form factors
 - Berger-Sehgal coherent model + updated Rein-Sehgal coherent
 - Single kaon production of Athar et al.
 - New cascade FSI model with medium corrections for pions and nucleons

A complete generation needs more than a set of models

- The experimental smearing mixes all the different interaction process
- There are ad-hoc solutions in every generator that needs tuning
 - ⇒ Transition between RES and DIS interactions
 - Implications for 1π production

GENIE Version 3

Models

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

graphics by grafiche.testi@gmail.com

Interface with the work behind the scenes

- ⇒ "Comprehensive Model Configurations"
 - Self-consistent collections of primary process models
 - Help cooperation between collaborations
 - Unified model identifications
 - single command-line flag
 - --tune G18_02a_00_000
 - Complete characterisation against public data
 - Possibility to host configurations provided by experiments
 - Access to tunes against datasets
 - same interface
 - Documentation:
 - Manual
 - Dedicated web page tunes.genie-mc.org/

- Configurations of interest for this talk
 - G18_02a_00_000 New default in v3
 - Empirical MEC
 - CCQE process is Llewellyn Smith Model
 - Dipole Axial Form Factor Depending on $M_A = 0.99 \, GeV$
 - Nuclear model: Fermi Gas Model Bodek, Ritchie
 - G18_02a_02_11a a genie supported tune
 - Started from G18_02a_00_000
 - Tuned to match 1π and 2π production
 - Deuterium data
 - G16_10j_00_000 Nieves, Simo, Vacas Model
 - Theory motivated MEC
 - CCQE process is Nieves
 - Z-Expansion Axial Form Factor
 - Nuclear model: Local Fermi Gas Model
 - Full nuclear cascade model for FSI
- Small variations changing FSI models

Technical updates

- New Git Repository https://github.com/GENIE-MC
 - Contributions are welcome through this new channel
 - Thanks to HEPForge for the many years of support
- Reweight is now a detached and independent repository
- Website http://www.genie-mc.org/
- Updated manual hosted on a dedicated DocDB
- Code
 - System handles multiple configurations
 - Updated XML file structure ⇒ safer and with no redundancies
 - Files re-organisation

Collaboration with Professor

Tuning

- Why tuning?
 - Constraint parameters
 - Provide specific tunes for experiments
 - Liquid Argon tune
- Expected Output:
 - Parameter sets from data from various experiments
 - with estimated systematic errors
 - Parameter covariance matrix
 - ⇒ No official support until v4
- Numerical methodology
 - Old problem in High Energy Physics
 - CPU demanding
 - Solution found in the Professor suite
 - http://professor.hepforge.org
 - Numerical assistant
 - Developed for ATLAS experiment

Database and validation

Database

- Comparing GENIE predictions against public datasets
 - Modern Neutrino Cross Section measurement
 - nuclear targets
 - MiniBooNE, T2K, MINERvA
 - Historical Neutrino Cross Section Measurement
 - Measurements of neutrino-induced hadronic system characteristics
 - e.g. Forward/backward hadronic multiplicity distributions
 - Measurements of hadron-nucleon and hadron-nucleus event characteristics
 - FSI tuning
 - For pion, kaons, nucleons and several nuclear targets
 - Spanning hadron kinetic energies from few tens MeV to few GeV
 - Semi-inclusive electron scattering data
 - electron-nucleus QE data
 - electron-proton resonance data
- ⇒ Validation based on neutrino, electron and hadron beam simulations
 - We are not limited to simulate only neutrinos

What generators can do depends on the available datasets

Evolving datasets - Old datasets

Past

- Functions of E_{ν}
- "Only" statistical errors

- Ignore nuclear effects
- Poor statistical interpretation
- Poor model discrimination power

Evolving datasets - Present datasets

- Functions of experimental observables
- flux-integrated

Present

- Usually differential cross-sections
 - 1D, 2D
- Organised by topology, not process
- Higher statistics
- More statistically robust
 - ⇒ See Fermilab neutrino seminar by Mikael Kuusela - 2017/04/13
- Sometimes incomplete
- Helped the development of new models
 - 2p/2h

Future of datasets - a personal view

Future

- One big covariance matrix per experiment
- Correlation between datasets
- Differential cross sections, dim > 2
- No data releases with this format
 - SBND is thinking about a solution
- It is usually a big effort but ...
 - dedicated experiments

We finally have a way to use these datasets

- Statistically coherent
- Complete error analysis

Neutrino interactions at few GeV - A crash course

- Multiple topologies
 - \bullet 0π
 - 1π

 - DIS
- ⇒ It might be easier if it wasn't for the nucleus

- Bicycle rider descending the Eiffel Tower
 - from the first level

- about 350 steps
- Bicycle wheel is $\sim 1 m$ in diameter

Thanks to K. McFarland for the idea

- Bicycle rider descending the Eiffel Tower
 - from the first level

- about 350 steps
- Bicycle wheel is $\sim 1 m$ in diameter
- Clear trajectories according to step size:

Thanks to K. McFarland for the idea

- Bicycle rider descending the Eiffel Tower
 - from the first level
 - about 350 steps

- Bicycle wheel is $\sim 1 m$ in diameter
- Clear trajectories according to step size:
 - steps were \sim 1 cm height

Thanks to K. McFarland for the idea

- Bicycle rider descending the Eiffel Tower
 - from the first level
 - about 350 steps

- Bicycle wheel is $\sim 1 m$ in diameter
- Clear trajectories according to step size:
 - steps were ~1 cm height
 - steps were ramps of $\sim 100 \, m$

Thanks to K. McFarland for the idea

- Bicycle rider descending the Eiffel Tower
 - from the first level
 - about 350 steps
- Bicycle wheel is $\sim 1 m$ in diameter
- Clear trajectories according to step size:
 - steps were ∼1 cm height
 - steps were ramps of $\sim 100 \, m$
- Reality

- wheel size is too close to the step size
- ⇒ Not a clear trajectory
 - He could make it (luck?)
 - He could fell (how?)
 - ⇒ Information required

Thanks to K. McFarland for the idea

- Bicycle rider descending the Eiffel Tower
 - from the first level
 - about 350 steps
- Bicycle wheel is $\sim 1 m$ in diameter
- Clear trajectories according to step size:
 - steps were ∼1 cm height
 - steps were ramps of \sim 100 m
- Reality

Difficulties

- wheel size is too close to the step size
- ⇒ Not a clear trajectory
 - He could make it (luck?)
 - He could fell (how?)
 - → Information required

Thanks to K. McFarland for the idea

All we know is that it is going to be painful

Difficult Multi-Scale problems - Neutrino interactions

• $E_{
u} \sim 0.3 - 5.0 \text{ GeV}$

- $m_{\Delta}-m_{N}\sim 250~{
 m MeV}$
- Binding energy ~ 30 MeV in ¹²C
- Different interaction types
 - Quasi-Elastic and Inelastic
 - No clean separation because of nuclear effect
- Problem ignored for the longest time
 - Charged lepton people told we were ignoring too much
- Gradually and painfully we are learning
- \Rightarrow I'll tell you the story of 0π interactions
 - Better data
 - Relevant in the ESSnuSB case
- \Rightarrow Mention a bit of the 1π puzzle

CC Quasi-Elastic - 0π on single nucleons

$$\frac{d\sigma^{\text{QES}}}{dQ^{2}} = \frac{G_{F}^{2}\cos^{2}\theta_{C}M^{2}\kappa^{2}}{2\pi E_{\nu}^{2}}\left[A\left(q^{2}\right) + \left(\frac{s-u}{4M^{2}}\right)B\left(q^{2}\right) + \left(\frac{s-u}{4M^{2}}\right)^{2}C\left(q^{2}\right)\right]$$

- Theoretically well understood
 - One diagram
- A, B and C are form factors
 - They have to be measured
 - B and C are known from e-N scattering
 - A to be extracted from ν data
- Axial Form factor
 - Dipole standard parameterization

•
$$A(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2}\right)^{-2}$$

- $g_A = 1.26$ from neutron β decay
- fitted based on $\partial \sigma / \partial Q^2$ data

A little bit of history

CC Quasi-Elastic - Historic datasets

- Deuterium data
 - from 0.2 GeV
 - up to \sim 100 GeV
 - both Neutrinos and Anti-neutrinos

A little bit of history

CC Quasi-Elastic - Historic datasets

- Deuterium data
 - from 0.2 GeV
 - up to \sim 100 GeV
 - both Neutrinos and Anti-neutrinos
- Critical parameter: M_A
 - *M_A* ~ 1 GeV
- Note the energy range

A little bit of history

0π on heavy nuclei

- On heavy nuclei things got complicated
- MiniBooNE ⇒ first evidence
 - Carbon target
- Possible explanation from enhanced M_A
 - ⇒ incompatibility with "historical" datasets

0π on heavy nuclei - Solution

- MiniBooNE is a Cherenkov detector
 - Not able to see nucleons
- MiniBooNE dataset is a CCQE-like sample
- genuine CCQE
- Multi-nucleon Emission
 - np-nh
 - Leading contribution is 2p-2h (2 particles - 2 holes)

2p-2h scheme

Hints of solution

2 Particles - 2 Holes

Difficult to have a complete model

Different approaches include different diagrams

Effect of MEC on energy reconstruction

- CCQE is a 2-body reaction
 - E_{ν} is just a function of lepton momentum and angle
- MEC is not a 2-body reaction
 - low energy tails in reconstructed energy distributions
- MEC also relevant for CP searches
 - np-nh is different for $\nu/\bar{\nu}$
- ⇒ MEC is important to achieve precise measurements

$$E_{\nu} = \frac{m_{p}^{2} - (m_{n} - E_{b})^{2} - m_{\ell}^{2} + 2(m_{n} - E_{b})E_{\ell}}{2(m_{n} - E_{b} - E_{\ell} + p_{\ell}\cos\theta_{\ell})}$$

Martini et al

Problems in 2p2h modelling in u interactions

Something not entirely new

- Component well known in electron-N scattering
 - It goes under different names
- There it is easy to know q_0
 - Monochromatic electron beam

Something not entirely new

- Component well known in electron-N scattering
 - It goes under different names
- There it is easy to know q_0
 - Monochromatic electron beam
- In neutrino experiments
 - flux convoluted distributions
 - function of the visible energy
 - ⇒ MINFRvA and NOvA

From Resonances to DIS

Connecting dots

- Two resonance models:
 - Rein-Sehgal model [D.Rein et. al., Annals Phys. 133 (1981)]
 - Berger-Sehgal Model [Bodek, A. et al. Nucl.Phys.Proc.Suppl. hep-ex/0308007]
 ⇒ Include mass for the final state lepton

- None of the RES models includes interference
- ⇒ A non-resonant background needs to be added
 - DIS also contributes to RES production after hadronization
- Different models must be merged together
- ⇒ avoiding double counting
 - Data only from ν_{μ} interactions

$$\frac{d^2\sigma^{INEL}}{dO^2dW} = \frac{d^2\sigma^{RES}}{dO^2dW} + \frac{d^2\sigma^{DIS}}{dO^2dW}$$

- RES contribution stops at $W = W_{cut}$
 - → Rein-Sehgal or Berger-Sehgal models

$$\frac{d^2\sigma^{RES}}{dQ^2dW} = \sum_{K} \left(\frac{d^2\tilde{\sigma}^{RES}}{dQ^2dW} \right)_{K} \cdot \Theta(W_{cut} - W)$$

Pure DIS cross section for W > W_{cut}
 → Bodek-Yang model

$$\frac{d^{2}\sigma^{DIS}}{dQ^{2}dW} = \frac{d^{2}\tilde{\sigma}^{DIS}}{dQ^{2}dW} \cdot \Theta(W - W_{cut}) + \frac{d^{2}\tilde{\sigma}^{DIS}}{dQ^{2}dW} \cdot \Theta(W_{cut} - W) \cdot \sum_{m} f_{m}$$

Non-Resonant Background: Scaled DIS

Very low energy data

Data below 200 MeV

That's all

Very low energy data

Data below 200 MeV

That's all

I'm not joking!

Very low energy data

Data below 200 MeV

That's all

I'm not joking!

Have a near detector

And a dedicated tuning program

Integrated cross sections - ν_u Inclusive

- Poor data at low energy
- Minimum energy 200 MeV
- known tensions between inclusive and 1π data
 - ⇒ Discrepancy at 1 GeV
 - Not statistically significant
- Details available in separate files

- G18 02a untuned
- \bullet G18 02a tuned with π CC data
- G18 10j untuned

Integrated cross sections

Integrated cross sections - $\bar{\nu}_{\mu}$ Inclusive

- Poor data at low energy
- Minimum energy 1 GeV
- known tensions between inclusive and 1π data
 - ⇒ Discrepancy at 1 GeV
 - Not statistically significant
- Details available in separate files

- G18 02a untuned
- \bullet G18 02a tuned with π CC data
- G18 10j untuned

Integrated cross sections

Integrated cross sections - CCQE(-like)

- G18 02a untuned
- \bullet G18 02a tuned with π CC data
- G18 10j untuned

- Same model Llewellyn Smith
 - small difference in M_A
 - tune result
- Limited low energy data

Integrated cross sections

Integrated cross sections - Pion production

- \bullet G18 02a tuned with π CC data
- G18 10j untuned

- Same model Berger-Sehgal
 - + GENIE SIS
 - Huge effect due to tune
- Data only for ν_{μ}

MiniBooNE CCQE (0π)

- ullet Both u and $\bar{
 u}$
 - Phys. Rev. D81, 092005 (2010)
 - Phys. Rev. D88, 032001 (2013)
- Double differential cross section
- flux integrated
- No correlations
- Nieves Model (G18_10j) strongly preferred
 - $\chi^2 = 68.4/137 \text{ DoF}$
 - w.r.t. to ~ 350 of G18 02a

MiniBooNE CCQE (0π)

- ullet Both u and $\bar{
 u}$
 - Phys. Rev. D81, 092005 (2010)
 - Phys. Rev. D88, 032001 (2013)
- Double differential cross section
- flux integrated
- No correlations
- Nieves Model (G18_10j) strongly preferred
 - $\chi^2 = 68.4/137 \text{ DoF}$
 - w.r.t. to \sim 350 of G18_02a
- Difference in the forward μ region

MiniBooNE CCQE (0π)

- ullet Both u and $\bar{
 u}$
 - Phys. Rev. D81, 092005 (2010)
 - Phys. Rev. D88, 032001 (2013)
- Double differential cross section
- flux integrated
- No correlations
- Nieves Model (G18_10j) strongly preferred
 - $\chi^2 = 68.4/137 \text{ DoF}$
 - w.r.t. to \sim 350 of G18_02a
- ullet Difference in the forward μ region
- The same goes for $\bar{\nu}_{\mu}$
 - $\chi^2 = 43/78 \text{ DoF}$
 - w.r.t. ∼ 80 of G18_02a

Flux-integrated differential cross sections

T2K ND280 0π

- Double differential cross section
- flux integrated
- Fully correlated
- No strongly preferred model
- All not completely satisfactory
 - $\chi^2 \sim 180/67 \text{ DoF}$
- ⇒ Tensions between datasets

 $\partial^2 \sigma / \partial \cos \theta_{\mu} / \partial P_{\mu} [10^{-38} \text{ cm}^2/\text{GeV/n}]$

Data: t2k_nd280_numucc0pi_2015

Flux-integrated differential cross sections

T2K ND280 0π

- Double differential cross section
- flux integrated
- Fully correlated
- No strongly preferred model
- All not completely satisfactory
 - $\chi^2 \sim 180/67 \text{ DoF}$
- ⇒ Tensions between datasets
 - all models look reasonable "By eye" estimation
 - correlation is complicated
 - We can't ignore it!

MiniBooNE 1π

- Loads of different observables
- Missing correlations between different observables
- Untuned models seem favoured
- Complete disagreement with what MINERvA sees
 - \Rightarrow 1 π puzzle
- Only ν_{μ} data
 - \Rightarrow You should not care about ν_{μ} pion production

Next steps

- More tunes can be done
 - hadronization re-tune
 - Pythia 6 and 8 (implementation is ongoing)
 - Tune of FSI
 - Both hN and hA intranuke
- Data from Liquid argon experiments
 - Part of GENIE collaboration is in SBND
 - Plan for argon tunes
- Look forward to more data
 - ESSnuSB will be a unique source of low energy data
- Release these results
 - Papers is in preparation
 - Implementation in GENIE v3

- GENIE shall serve the ESSnuSB case
 - Some models are designed for low energy regions
 - Future tunes and developments will be helpful
- Lack of data is serious
 - This will require dedicated work
 - Source of interesting physics data
 - ⇒ you better have a good near detector
- Researchers are encouraged to contact us to start a collaboration
 - New theory models
 - New experimental collaborations

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

Backup slides

Why care about ν interactions in the few-GeV region?

- Precision era in ν experiments
 - Lepton CP violation
 - Mass hierarchy
- ⇒ Oscillation measurements
 - Appearance mode
 - Relevant experiments
 - T2k, NOvA
 - DUNE, HyperK
 - ⇒ Beam energy ~ few GeV
 - Total systematic at few-percent level
 - CC 0π is the important reaction
 - \bullet for DUNE \sim 40% of the interactions

detector(s)

neutrino beam

- A simple ratio between Near and Far spectra is not enough
 - Detectors exposed to different flux
 - "functionally identical" detectors do not exists
- ⇒ No cancellations of model dependencies
 - Near flux has to be fitted at the near detector and then propagated
 - ⇒ Models required

far detector

Is theory enough?

- Theory models are just analytical functions
 - Not everything is analytical
- Sometimes empirical models are the only option
 - Information has to be extracted from data
 - Notable examples:
 - Final State Interactions
 - Nucleus form factors
- Experiments do Monte Carlo simulations
 - No exceptions
 - We need events
 - ⇒ Numerical analysis

Is theory enough?

- Theory models are just analytical functions
 - Not everything is analytical
- Sometimes empirical models are the only option
 - . Information has to be extracted from data
 - Notable examples:
 - Final State Interactions
 - Nucleus form factors
- Experiments do Monte Carlo simulations
 - No exceptions
 - We need events
 - ⇒ Numerical analysis

No spherical cows

Generators are required for a complete prediction

- Merge theory and experimental approaches
- Obvious practicality of a single machinery

Neutrino MC Generators: A Theory/Experiment Interface

- Connect truth and observables
 - event topologies and kinematics
- Neutrino Generators are the only access to flux distorsion due to oscillation
 - Every observable is a convolution of flux, interaction physics and detector effectss
- Good Generators
 - uncertainty validation
 - tune the physics models that drive the result of that convolution
- ⇒ Tuning proved to be difficult
 - So far no results

Several MC Generators in use: GENIE, GIBUU, NuWro, NEUT

- Compare data and models
 - Reliability
 - Validity region
 - ⇒ You cannot study oscillations without fully understood models

- Compare data and models
 - Reliability
 - Validity region
 - → You cannot study oscillations without fully understood models
- Compare dataset against dataset
 - Data quality is increasing
 - ⇒ Inconsistency
 - Highlight tensions

- Compare data and models
 - Reliability
 - Validity region
 - → You cannot study oscillations without fully understood models
- Compare dataset against dataset
 - Data quality is increasing
 - ⇒ Inconsistency
 - Highlight tensions
- Global fits
 - Generator is the ideal place for global fits
 - We control the model implementation
 - Have access to empirical models
 - Finding the best parameters
 - Cross Section priors based on data

- Compare data and models
 - Reliability
 - Validity region
 - ⇒ You cannot study oscillations without fully understood models
- Compare dataset against dataset
 - Data quality is increasing
 - ⇒ Inconsistency
 - Highlight tensions
- Global fits
 - Generator is the ideal place for global fits
 - We control the model implementation
 - Have access to empirical models
 - Finding the best parameters
 - Cross Section priors based on data
- Feedback for experiments
 - Drive the format of cross section releases
 - Hint toward key measurements

What generators can do depends on the available datasets

Characteristic events

- 2 back-to-back nucleons
- Nuclear effect can change

observed topology

- migrations in the number of observed protons
- future LarTPCs (or gas TPCs) important role
 - Disentangle FSI from MEC
 - CC 0π samples proton multiplicity
- Important dataset that will "soon" be available

[Phys.Rev. D90 (2014) 1, 012008]

Parameterisation instead of a full MC

Role of generators

- Parameterisation instead of a full MC
 - Select points of param space

- Parameterisation instead of a full MC
 - Select points of param space
 - Evaluate bin's behaviour with brute force

- Parameterisation instead of a full MC
 - Select points of param space
 - Evaluate bin's behaviour with brute force
 - **1** Parameterisation I(p)

- Parameterisation instead of a full MC
 - Select points of param space
 - Evaluate bin's behaviour with brute force
 - **1** Parameterisation I(p)
 - Repeat for each bin
- a parameterization $I_j(p)$ for each bin
 - N dimension polynomial
 - Including all the correlation terms up to the order of the polynomial
- \Rightarrow Minimise according to $\vec{l}(p)$
 - ~ 20 parameters
 - This limit is due to disk space requirements
 - It can be overcome
 - Special thanks to H. Schulz

Advantages and expectations

- All parameters can be tuned
 - Not only reweight-able
 - ⇒ no dedicated machinery to develop
- Advanced features
 - Take into account correlations
 - weights specific for each bin and/or dataset
 - Proper treatment while handling multiple datasets
 - Restrict the fit to particular subsets
 - Priors can be included
 - Nuisance parameters can be inserted
 - proper treatment for datasets without correlations
 - ⇒ MiniBooNE, old bubble chamber datasets
- Professor based Reweight package in development
 - Reweight hard to maintain: each model requires a specific reweight module
 - Better interface with the errors produced by a global fit
 - Allow non-reweightable parameters e.g. HN FSI
 - ⇒ version 4

Parameterization residuals

RES Models: the Rein-Sehgal Model

- Most widely used model for resonance neutrino production [D.Rein et. al., Annals Phys. 133 (1981)]
- Only contains resonances up to W = 2GeV
- Limit $m_{\mu} = 0$
- Non-resonant background of I = 1/2 added incoherently

$$\frac{d\sigma}{dQ^2dW^2} \propto \left[u^2\sigma_L + v^2\sigma_R + 2uv\sigma_s\right]$$

u and v are kinematic factors σ_L , σ_R and $\sigma_s \to$ Helicity cross sections Depend on:

- F_{\pm} and F_0 dynamical form factors
- Axial and vector transition form factors, $G^{V,A}(q^2) \propto \left(\frac{1}{1-q^2/M_{V,A}^2}\right)^2$
- Original paper values $M_V = 0.84 GeV$ and $M_A = 0.95 GeV$

RES Models: the Berger-Sehgal Model

- Improved version of the RS model
 [Bodek, A. et al. Nucl.Phys.Proc.Suppl. hep-ex/0308007]
- Non zero $m_{\mu} \Rightarrow$ Final state lepton can have + or helicity
- Gives a suppressed cross section at small angles

$$\frac{d\sigma}{dQ^2dW^2} \propto \sum_{\lambda=+,-} \left[\left(c_L^{(\lambda)} \right)^2 \sigma_L^{(\lambda)} + \left(c_R^{(\lambda)} \right)^2 \sigma_R^{(\lambda)} + \left(c_S^{(\lambda)} \right)^2 \sigma_s^{(\lambda)} \right]$$

Depends on:

- $-c_L^{(\lambda)}, c_R^{(\lambda)}$ and $c_s^{(\lambda)}$ are the new kinematic factors
- Six helicity cross sections that depend on dynamical form factors
- Axial and vector transition form factors also calculated using the dipole approximation

Shallow Inelastic Scattering region

- In the RS model the non-resonant background is computed by introducing incoherently an extra amplitude with I=1/2
 - → not completely satisfactory approach
- Quark-Hadron duality can give an alternative model to describe the non-resonant background
 - The average over resonances behaves similarly to the valence quark contribution to DIS scaling curve
 - Harari and Freund conjecture suggests the existence of a relationship between non-resonant and sea-quark contributions to structure functions [Phys. Rev. Lett. 20 (1969) 1395]
- If duality is satisfied, the total resonance distribution can be described by an extrapolated DIS.

Importance of the covariance - an example

- Real dataset
- 8 points
- Which is the best agreeing curve?
 - Black
 - Red
- Difference in terms of sigma?
 - < 1
 - > 1

Importance of the covariance - an example

- Real dataset
- 8 points
- Which is the best agreeing curve?
 - Black
 - Red
- Difference in terms of sigma?
 - < 1
 - > 1
- Black $\chi^2 = 17.5/8 \text{ DoF}$
- Red $\chi^2 = 10.9/8$ DoF
- \Rightarrow Almost 2 σ

Datasets - 311 data points

- MiniBooNE ν_{μ} CCQE
 - 2D histogram
 - 137 points
 - No correlation matrix
- MiniBooNE $\bar{\nu}_{\mu}$ CCQE
 - 2D histogram
 - 78 points
 - No correlation matrix
- T2K ND280 0π (2016) V2
 - 2D histogram
 - 80 points
 - full covariance matrix
- MINERVA ν_{μ} CCQE
 - 1D histogram
 - 8 points
 - full covariance matrix
- MINERvA $\bar{\nu}_{\mu}$ CCQE
 - 1D histogram
 - 8 points
 - full covariance matrix

- Missing Covariance between Neutrino and antineutrino data
 - Minerva released this information!

Data covariance

Data Covariance

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

Muon Angle for 0π events Default 0

 Data Constraints for Oscillation analyses

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Data Constraints for Oscillation analyses
 - Propagate the result to other observables

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Data Constraints for Oscillation analyses
 - Propagate the result to other observables
- Propagate parameters uncertainty through the parameterization

Model comparison

Model comparison

$$\begin{array}{lll} \underline{\textit{Martini et al.}} & \underline{\textit{Nieves et al.}} & \underline{\textit{Amaro et al.}} & \underline{\textit{Lovato et al.}} & \underline{\textit{Bodek et al.}} \\ \\ \frac{\partial^2 \sigma}{\partial \Omega \, \partial \epsilon'} &=& \frac{G_F^2 \, \cos^2 \theta_c}{2 \, \pi^2} k' \epsilon' \, \cos^2 \frac{\theta}{2} \left[\frac{(q^2 - \omega^2)^2}{q^4} \, G_E^2 \, R_\tau + \frac{\omega^2}{q^2} \, G_A^2 \, \underline{R_{\sigma\tau(L)}} + \right. \\ \\ & + \left. 2 \left(\tan^2 \frac{\theta}{2} + \frac{q^2 - \omega^2}{2q^2} \right) \left(G_M^2 \, \frac{\omega^2}{g^2} + G_A^2 \right) \, \underline{R_{\sigma\tau(T)}} \pm 2 \, \underbrace{\frac{\epsilon + \epsilon'}{M_N} \, \tan^2 \frac{\theta}{2} \, G_A \, G_M \, \underline{R_{\sigma\tau(T)}}}_{\underline{m_{\sigma\tau(T)}}} \right] \end{array}$$

[M.Martini, FUNFACT J Lab workshop]

Hadronization example

Hadronization example

