Multi-messenger astrophysics with the Pierre Auger Observatory

João de Mello Neto^a for the Pierre Auger Collaboration^b ^a Federal University of Rio de Janeiro - APC, Paris-Diderot ^b Observatorio Pierre Auger, Malargüe, Argentina

> Neutrino Week - GDR Neutrino Strasbourg, 5-6 November 2018

Outline

- ***** Introduction
- ***** The Pierre Auger Observatory
- ***** Search for photons
- ***** Search for neutrinos
- * GW and Blazars follow-ups
- ***** Observatory upgrade
- ***** Conclusions

Pierre Auger Observatory: nuclei, photons and neutrinos

The Pierre Auger Observatory

The Pierre Auger Observatory

Two independent and complementary detector systems

Fluorescence Detector (FD)

24 telescopes in four buildings FoV: 1°-30° in elevation 3 High Elevation Auger Telescopes (HEAT) FoV: 30°-60° in elevation

~13% duty cycle

longitudinal profile

Surface detector (SD)

1660 water cerenkov detec. (WCD) in 3000 km²

1.5 km spacing

Denser array, 750 m

100% duty cycle

particle density at ground

Hybrid events: at least one WCD + FD AERA 124 antennas in 6 km² Underground muon detectors Atmospheric monitoring stations Auger: data since 2004, completed in 2008

SD * signal at 1000 m, S₁₀₀₀ energy estimator * energy calibration from FD in hybrid events

Quadruple hybrid event

Hybrid energy calibration

The search for primary photons

Photon showers x hadronic showers

Identification of photon showers

- * UHE photon showers develop deeper in the atmosphere than showers of same energy induced by hadrons (smaller multiplicity of electromagnetic interactions) Xmax
- * Photon showers smaller footprint on ground (smaller number of triggered stations) Nstat
- *** Steeper** lateral distribution function

Detailed MC simulations 10¹⁷ and 10¹⁹ eV

$$S_{b} = \sum_{i}^{N_{\text{stat}}} S_{i} \left(\frac{r}{r_{0}}\right)^{b}$$

Niechciol, for the Pierre Auger Colab., ICRC 2017

Background rejection and signal efficiency

Different algorithms and combinations of input variables

Boosted decision tree and Fisher multivariate analysis

- ***** Energy and zenith angle are included in the BDT
- * background contamination 0.14% for a photon selection efficiency of 50%

Niechciol, for the Pierre Auger Colab., ICRC 2017

BDT photon selection

* Three events pass the cut, with 11.4 (3.3) expected for pure-proton (mixed) backg.

* Candidates compatible with background expectations, upper limits on the integral photon flux at 95% C.L. are derived. Niechciol, for the Pierre Auger Colab., ICRC 2017

upper limits on photon flux

$$\Phi_{UL}^{0.95}(E_{\gamma} > E_{0}) = \frac{N_{\gamma}^{0.95}(E_{\gamma} > E_{0})}{\sum}$$

- ★ Number of candidates at 95% CL
- * Integrated exposure assuming a power law spectrum

- **Tight constraints on current top-down scenarios to explain the origin of UHE CR**
- Sensitivity to photon fractions of about 0.1% for 1 EeV \star
- Exploring the region of photon fluxes predicted in astrophysical scenarios

Niechciol, for the Pierre Auger Colab., ICRC 2017

Limits to sources of UHE photons

Targeted search upper limits:

- ★ EeV photons might be produced in transient sources, such as gamma-ray bursts or supernovae, or aligned in jets not pointing to us.
- * EeV protons escape from a source more freely than protons that produce TeV photon fluxes (small production of of EeV photons)

Photon flux from Galactic center

- ***** HESS collaboration: acceleration of TeV protons in the GC
- ***** Extrapolation to EeV takes into account interactions with CMB
- ***** Power law with exponential cuttof: upper limit on the cutoff energy of 2 EeV
- ***** The connection to measurements from the TeV range enables new multi-messenger studies

The HESS Collab. Nature, 2016

Niechciol, for the Pierre Auger Colab., ICRC 2017

The search for neutrinos

Neutrino search: old and young showers

Sensitivity: all flavours and channels

Three selection criteria

- ***** Downward-going low zenith (2 and 4)
- * Downward-going high zenith (2, 4 and 5)
- ***** Earth-skimming (3)

Selecting v in data: young showers

Signals produced by the passage of shower particles are digitized with Flash ADCs with 25 ns resolution.

Pierre Auger Coll., Phys. Rev. D 91, 092008 (2015); Ap JL 755:L4 (2012)

Selecting v in data: horizontal showers

-	
I	
I	

Earth-Skimming $(90^\circ, 95^\circ)$	Down-going High $(75^{\circ}, 90^{\circ})$	Down-going Low $(65^{\circ}, 75^{\circ})$
L/W > 5	L/W > 3	
$\langle V\rangle \in (0.29,~0.31) \; \mathrm{m \; ns^{-1}}$	$\langle V angle~<~0.313~{ m m~ns^{-1}}$	_
${ m RMS}(V) < ~0.08 { m \ m \ ns^{-1}}$	$\mathrm{RMS}(V)/\langle V \rangle < 0.08$	_
—	$\theta_{ m rec} > 75^\circ$	$\theta_{\rm rec} \in (58.5^{\circ}, 76.5^{\circ})$

v search: ES Earth skimming

* sensitivity dominated by exposure, not by background

21

Exposure to diffuse flux of UHE ν

Earth-skimming neutrinos dominate the exposure in spite of the reduced solid angle to which the detector is sensitive to them: larger neutrino conversion in the Earth's crust

Differential limits to diffuse v flux

- ***** Limits and models converted to single flavour
- ***** Differential limits in one decade of energy
- ***** Auger maximum around EeV, comparable to IceCube
- ***** Complementary measurements !

Integrated limits to diffuse v flux

* Auger integrated limit \sim 4.4 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹ * factor \sim 2 below Waxman-Bahcall upper bound

Expected event rates

Formation Rate evolution with redshift *z*

Proton dominated sources

 * Above white line: excluded at 90% by Auger 2016 (8.4 yrs of full Auger)

Steady sources, blazars and GW events

Limits to point-like steady v sources

lceCube, Astrophys.J. 835, ٦51 (2017) ۵ ۸NTARES, PRD 96, 082001 (2017)

Binary-BH mergers and neutrinos

- * LIGO GW150914, GW151226, GW170104 (& LVT151012)
- * Fermi GBM: transient source above 50 keV 0.4s after GW150914
- ***** possible association with a short gamma-ray burst

Mergers of BH are a potential environment where UHE cosmic rays can be accelerated

* UHECR accelerated by Fermi mechanism in presence of relic B-fields and debris from BH \rightarrow formation of BHs could imply emission of UHE v's and y's

K. Kotera, J. Silk, ApJL 823, L29 (2016)

★ If accretion disk present, UHECR can be accelerated by electric fields in disk dynamo
 → UHE v's from interaction with photon backgrounds and gas around BH

L. Anchordoqui, Phys. Rev. D 94, 023010, 2016

v in coincidence with BH mergers ?

Energy range: E > 100 PeV, complementary to IceCube-Antares follow up

LIGO&VIRGO, Icecube, ANTARES coll. PRD 93, 122010 (2016)

Auger Earth-Skimming and Downward-going neutrino selection to data in spatial and temporal proximity to GW150914, GW151226 (and LVT151012):

Two search periods (motivated by the association of mergers of compact systems and GRBs)

+/- 500 s around each GW event

- ***** to an upper limit on the duration of the prompt phase of the GRBs
- PeV neutrinos are thought to be produced in interactions of accelerated cosmic rays and the gamma rays with the GRB itself

One day after the event

- ***** Conservative upper limit on the duration of GRB afterglows
- ★ UHE neutrinos may be produced in interactions of UHECRs with the lowerenergy photons of the GRB afterglow

Same identification criteria to neutrinos as discussed previously

Instantaneous field of view

Auger Latitude: $\lambda = -35.2^{\circ}$

- Auger sensitivity limited to large zenith angles : at each instant in time neutrinos can be detected efficiently only from a specific portion of sky.
- ***** Instantaneous field of view of the SD array is limited
- * Covered region has very good sensitivity to earth-skimming tau neutrinos

No candidate was detected in the window of ± 500 s around the GRB event

Visibility time fraction in one sidereal day

Constraints on energy radiated from GW151226 in UHE v (E_v > 0.1 EeV)

Pierre Auger Coll., Phys. Rev. D 94, 122007 (2016)

44.1% of E_{GW}

A binary neutron star merger

- * GW170817: a NS-NS merger seen in gravitational waves
- * GRB170817A: confirmed as short GRB (Fermi GBM, Integral)
- ***** UV, optical and IR observation located the merger in NGC 4993
- * Fermi LAT, H.E.S.S., HAWC observe region later

ν in coincidence with GW170817

- ***** v follow up: Antares, IceCube and Pierre Auger Observatory
- * At time of GW trigger: event in region of maximum sensitivity for Auger

LiGO/VIRGO, ANTARES, IceCube and the Pierre Auger Observatory, AJL, 2017

GW170817 v limits

- * Time windows: ±500 s, 14-days
- ***** No neutrino candidate found
- * Only optimistic model constraint by observations
- Consistent with model predictions of short GRB observed off-axis and low luminosity GRB
- ***** Complementary searches
- An unprecedented joint effort of experiments sensitive to highenergy neutrino

LiGO/VIRGO, ANTARES, IceCube and the Pierre Auger Observatory, AJL, 2017

Blazar TXS 0506 + 056

Blazar TXS 0506+056:

- * BL Lac type, Dec=5.68 deg, RA = 05:09:25.96 hh:mm:ss
- * z = 0.3365 => Luminosity distance ~ 1.78 Gpc

Paiano et al., Astrophys. J. Lett. 854, L32, 2018

IceCube:

- * Event 170922A (Sep.22, 2017 at 20:54:30.43 UTC)
- **\star** Track-like event (angular resolution ~0.1deg). Estimated E_n~ 300 TeV
- Fermi-LAT reported association (within 0.1 deg) with TXS 0506+056 in a state of enhanced emission
- ***** Chance association with blazar disfavored at ~ $3.\sigma$ level
- High-energy neutrino emission from same blazar in archival data prior to 2017:
 13 ± 5 events

Follow-up campaign triggered by IceCube observation:

- ***** Gamma-Rays: Fermi-LAT, AGILE and MAGIC detection of enhanced emission
- ***** No neutrino detection in ANTARES

v flux limits from Blazar TXS 0506 + 056

First upper limits to the neutrino flux from TXS 0506+056 at EeV energies

IceCube et al., Science 361, 146 (2018)

The Pierre Auger Observatory upgrade

The Pierre Auger Observatory Upgrade

Increased composition with SD!

A new detector is needed

- * add a thin scintillator on top of each WCD to enhance em/muon separation
- New electronics (120 MHz, three times the current rate)

2016: Engineering Array 2018-2019: deployment of 1200 SSD 2019-2025: data taking (almost double exposure)

Pierre Auger Collaboration, arXiv:1604.03637

LDF of Ev.163076179300

WCD and SSD data

 Lateral distribution function determination composition-ermanced amsotropy studies
 particle physics with air showers

Martello, for the Pierre Auge Collab., ICRC 2017

Conclusions

Photons

- *** No photons with EeV energies detected so far**
- Search for a diffuse flux of photons: upper limits impose severe constraints on nonacceleration models for the origin of UHECRs and the predictions from some GZKbased models are within reach
- * Targeted search: no evidence for EeV photon emitters and the connection with the TeV energy regime enables new multi-messenger studies

Neutrinos

- *** No neutrino found**
- * UHE neutrinos easy to identify: inclined showers with broad time fronts
- ***** Search not limited by background but by exposure
- * Sensitivity peaks at ~ EeV (peak of cosmogenic neutrinos)
- ***** Diffuse bounds constrain UHE neutrinos models

Follow-up of GW and Blazar events:

- * Upper limits on UHE neutrinos in correlation with LIGO GW 2015 events:
- First limits above 10¹⁷ eV (complementary to IceCube limits)
- *** GW170817:** upper limits with Antares and IceCube
- ***** First high energy neutrino limits for Blazar TXS 0506 + 056

Active role in multimessenger era!

Backup slides