

The Quest for Neutrinoless Double- β decay

Matteo Agostini

Technical University of Munich (TUM)

Double-Beta Research in France Workshop, Set 4 2018, Paris, France

Neutrinoless Double- β Decay ($0v\beta\beta$)

Hypothetical second order nuclear transition:

 $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$

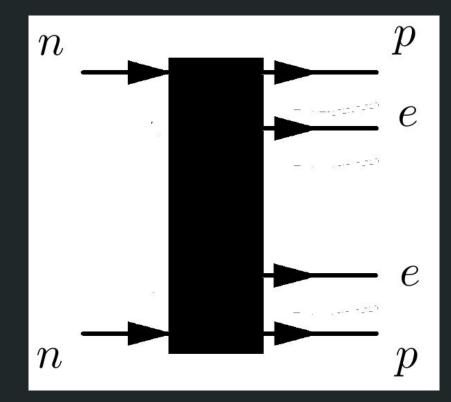
- foreseen by most of the extensions of the Standard Model
- > possible in many isotopes for which single β decay is be forbidden
- > $T_{1/2}$ limits in the range $10^{21} 10^{26}$ yr

< 50% chance for an atom to decay in a hundred trillion times the age of the universe

A portal to Physics beyond the Standard Model

 $0\nu\beta\beta$ at the level of nucleons

2n → 2p + 2e⁻

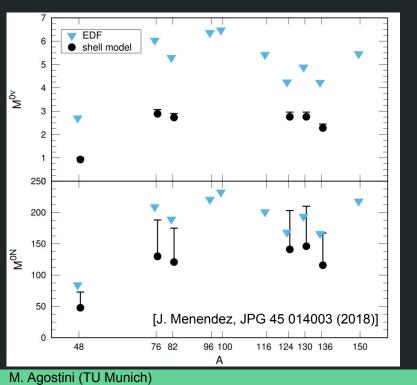

2 leptons produced w/o balancing anti-leptons

If observed:

- lepton number is not conserved
- first observation of "matter creation"

Broad implications:

- > $0\nu\beta\beta$ as fundamental as proton decay
- connected to matter-antimatter asymmetry in the Universe (Baryo and Leptogenesis)



A portal to Physics beyond the Standard Model

 $\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}(Q,Z) \cdot \left|\sum_{\text{mech. }i} \mathcal{M}_i \cdot \eta_i\right|$ The probability of the process $[T_{1/2}]^{-1}$ is proportional to the coherent sum of all mechanisms involved: Mechanism Phase Space Factor Nuclear Matrix Element λ'_{111} d_R e_L V + AV - A W_L W_R \tilde{u}_L u_L \tilde{g} χ_{jL}, N_{kL} light/heavy neutrinos N_{kR} right-handed current gluino / R-parity u_L P P W_L W_R \tilde{u}_L d_R e_L V - AV + A λ'_{111}

A portal to Physics beyond the Standard Model

The probability of the process $[T_{1/2}]^{-1}$ is proportional to the coherent sum of all mechanisms involved:

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G^{0\nu}(Q, Z) \cdot \left| \sum_{\text{mech. } i} \mathcal{M}_i \cdot \eta_i \right|^2$$
Mechanism
Nuclear Matrix Element

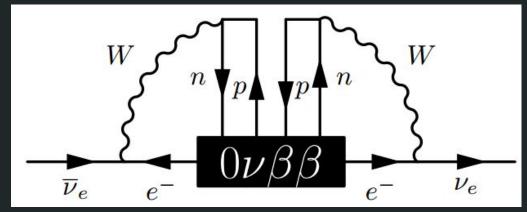
Nuclear Matrix Element:

- depends on channel, in general can be expressed in terms of light and heavy neutrino exchange
- different computations currently within a factor 2-3
- ongoing effort to increase understanding

Mechanism:

- Scale of new physics connected to the to $[T_{1/2}]^{-1}$
- > $[T_{1/2}]^{-1}$ is for $0\nu\beta\beta$ decay what \sqrt{s} is for LHC

$0v\beta\beta$ and the Origin of Neutrino Masses


Independently from underlying physics: if $0\nu\beta\beta$ decay exists, neutrinos are Majorana particle!

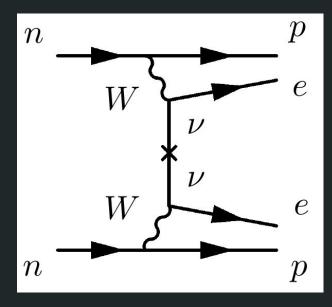
Black Box theorem:

 $0\nu\beta\beta$ operator can be rearranged to produce a neutrino/antineutrino oscillation (i.e. a Majorana mass term)

 $n \xrightarrow{p} e$

[Schechter, Valle, PRD 25 (1982) 2951]

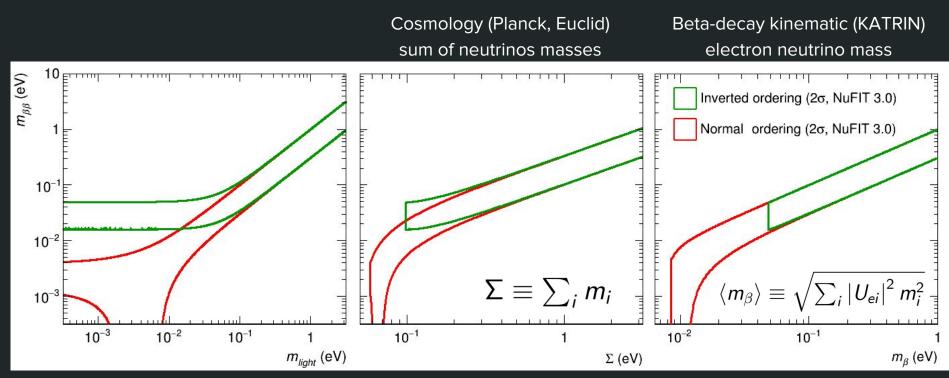
Note: bulk of neutrino mass not given by $0\nu\beta\beta$ operator


[Duerr et al., JHEP 1106 091,2011]

The Vanilla Channel

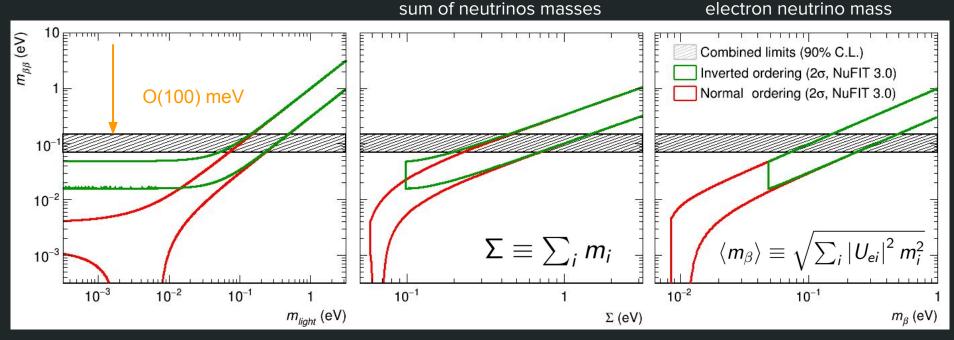
Exchange of light-Majorana neutrinos:

- requires minimal extension of the SM
 - neutrinos are massive + already proved
 - neutrinos have a majorana nature
- dominant channel in most of the frameworks


$$[T_{1/2}^{0\nu}]^{-1} = G_{0\nu} \cdot |\mathcal{M}_{0\nu}(A,Z)|^2 \cdot |m_{\beta\beta}|^2$$

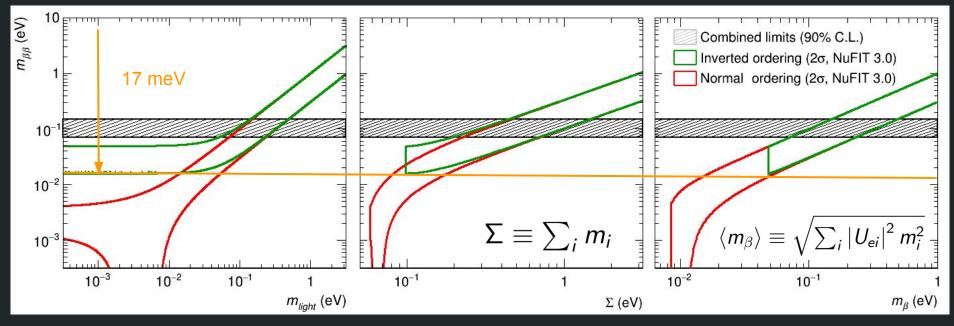
Effective Majorana Mass

$$|m_{\beta\beta}| = |\cos^2\theta_{12} \cos^2\theta_{13} m_1 + \sin^2\theta_{12} \cos^2\theta_{13} m_2 e^{i2\alpha_1} + \sin^2\theta_{13} m_3 e^{i2\alpha_2}$$


Neutrino Mass Observables

Neutrino Mass Observables

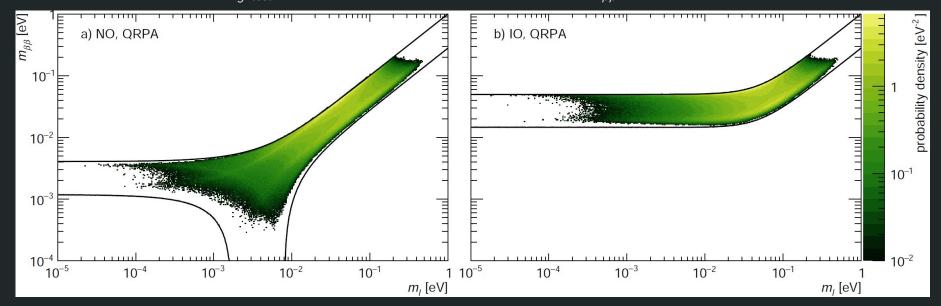
Cosmology (Planck, Euclid)


Beta-decay kinematic (KATRIN) electron neutrino mass

Neutrino Mass Observables

Cosmology (Planck, Euclid)

Beta-decay kinematic (KATRIN) sum of neutrinos masses electron neutrino mass

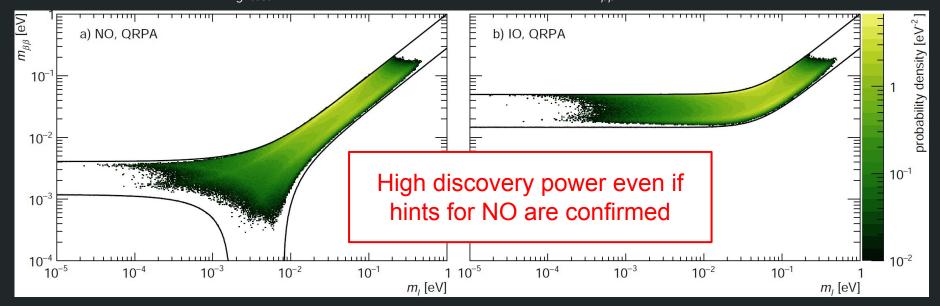

- Degenerate Majorana masses probed! \succ
- Next target inverted ordering band \succ

 $0\nu\beta\beta$ searches, cosmological surveys and direct mass \succ measurements give complementary information!

M. Agostini (TU Munich)

Probability Density from Global Fits

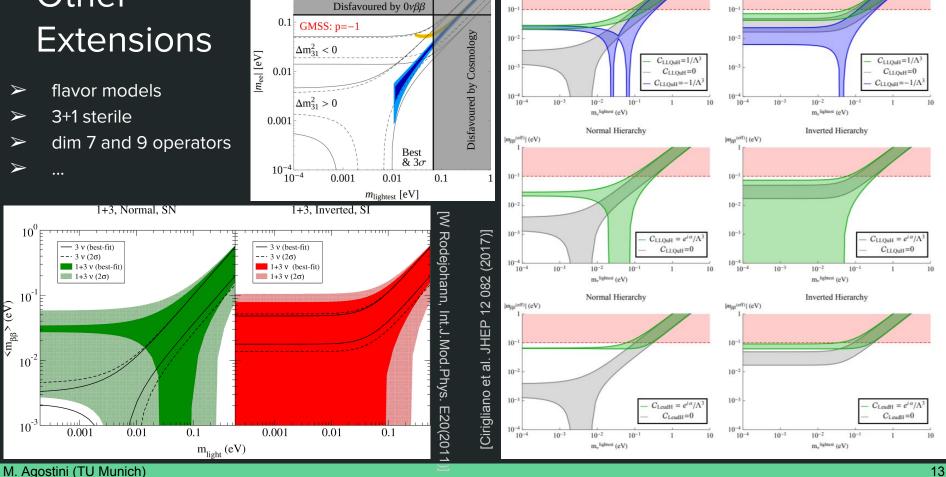
In absence of neutrino mass mechanisms or flavour symmetries that fix the value of the Majorana phases or drive $m_{lightest}$ to zero, the probability distribution for $m_{\beta\beta}$ is pushed to large values:


[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

Flat prior for the Majorana phases \rightarrow small $m_{\beta\beta}$ values require a fine tuning of the parameters

M. Agostini (TU Munich)

Probability Density from Global Fits

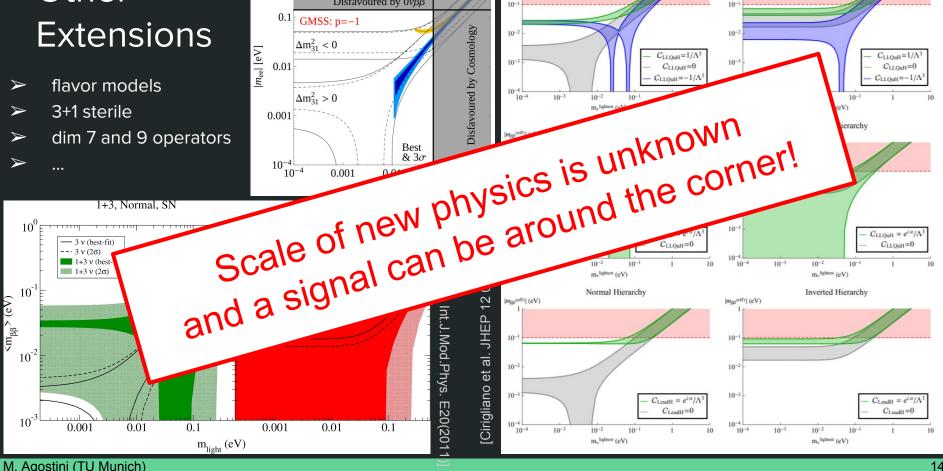

In absence of neutrino mass mechanisms or flavour symmetries that fix the value of the Majorana phases or drive $m_{lightest}$ to zero, the probability distribution for $m_{\beta\beta}$ is pushed to large values:

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

Flat prior for the Majorana phases \rightarrow small $m_{\beta\beta}$ values require a fine tuning of the parameters

Other

Normal Hierarchy


 $|m_{\beta\beta}^{(eff)}|$ (eV)

[King, Merle, Stuart, JHEP 1312, 005 (2013)]

Inverted Hierarchy

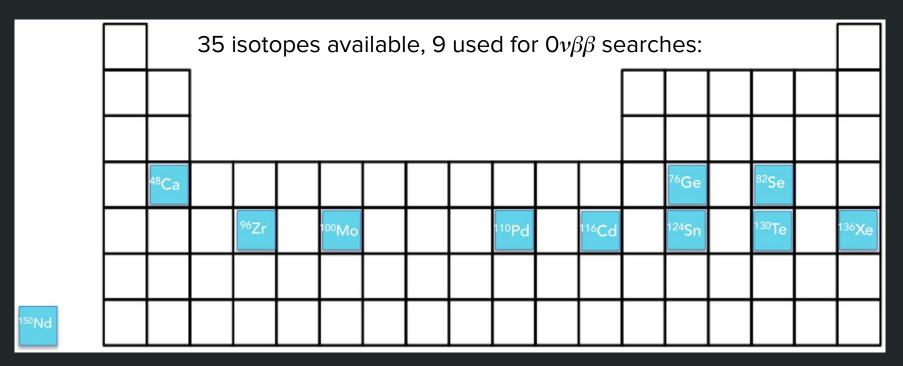
 $|m_{\beta\beta}^{(eff)}|$ (eV)

Other

Normal Hierarchy

 $|m_{\beta\beta}^{(eff)}|$ (eV)

[King, Merle, Stuart, JHEP 1312, 005 (2013)]

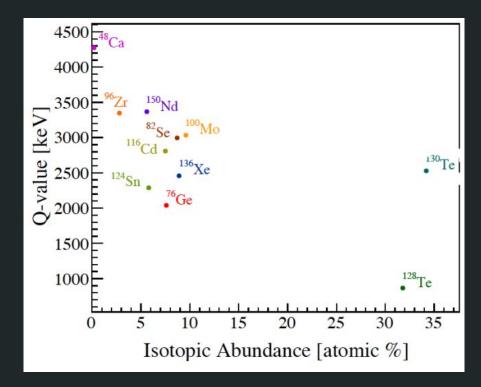

Disfavoured by 0vBB

Inverted Hierarchy

 $|m_{\beta\beta}^{(eff)}|$ (eV)

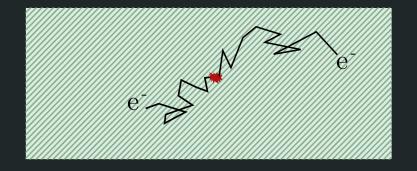
Experimental Aspects

Double-β Decaying Isotopes

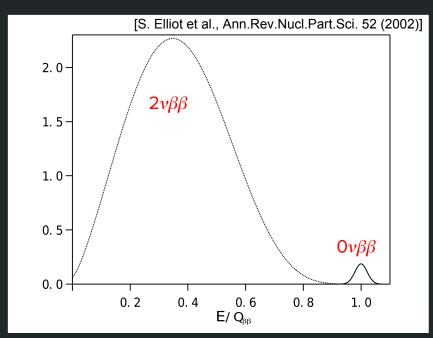


[Courtesy of K. Shaefner]

Double-β Decaying Isotopes

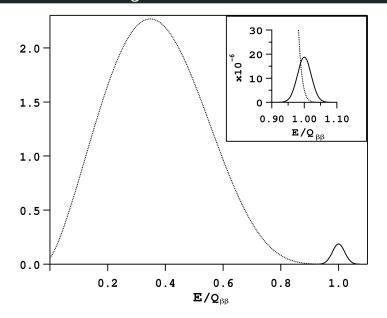

- > cost depends on natural enrichment
- > the higher is $Q_{\beta\beta}$ the better:
 - $\succ \quad [T_{_{1/2}}]^{-1} \propto \ G^{0\nu}(Q,Z) \propto (Q_{_{\beta\beta}})^5$
 - less background
- NMEs differes up to a factor 3
- very different detection technologies according to isotope

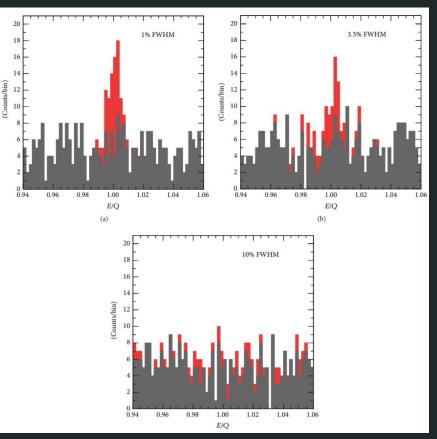
There is no "best" isotope. The detection technique can compensate for unfavorable parameters!



Standard Detection Approach

double- β isotope encompassed in the detector active material and behave as calorimeters


Most of the experiments have also other handles, however energy is the one observable that is both necessary and sufficient for discovery. Measuring of the electron energy sum: $0\nu\beta\beta$: (A, Z) -> (A, Z + 2) + 2e -> peak at Q_{ββ} $2\nu\beta\beta$: (A, Z) -> (A, Z + 2) + 2e⁻ + 2ν -> continuum

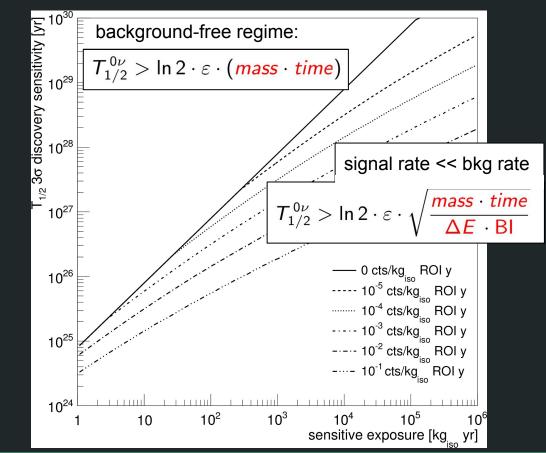

Energy Resolution & Background

[J. J. Gomez-Cadenas et al., PoS (GSSI2014), 004 (2015)]

Energy resolution important for background mitigation ($2\nu\beta\beta$ and others) and convincing signal identification

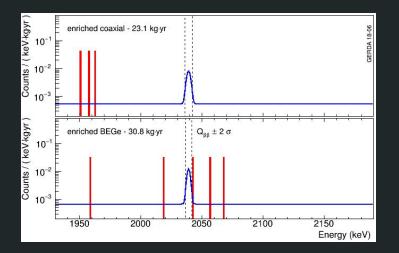
[S. Elliot et al., Ann.Rev.Nucl.Part.Sci. 52 (2002)]

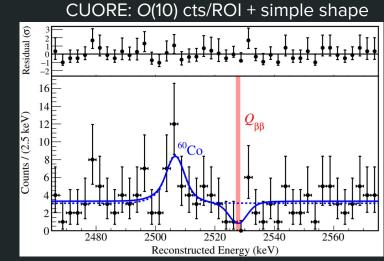
M. Agostini (TU Munich)


Signal and Background rates

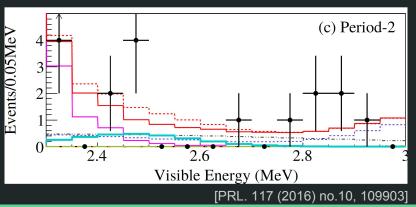
[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

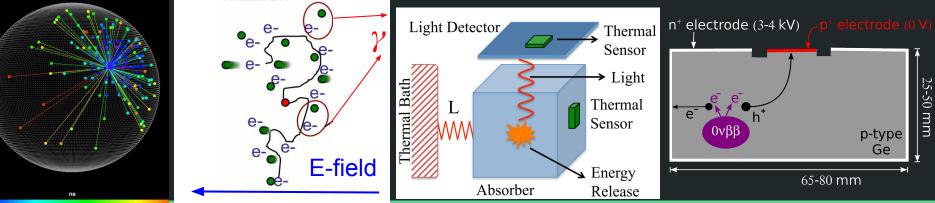
$$N_{0
uetaeta} = \ln 2 \cdot arepsilon \cdot N_{atoms} \cdot rac{t}{T_{1/2}^{0
u}}$$


 $T_{1/2} = 10^{25} \text{ yr} \implies O(1) \text{ event / (10 kg yr)}$ $T_{1/2} = 10^{26} \text{ yr} \implies O(1) \text{ event / (100 kg yr)}$ $T_{1/2} = 10^{27} \text{ yr} \implies O(1) \text{ event / (1 t yr)}$ $T_{1/2} = 10^{28} \text{ yr} \implies O(1) \text{ event / (10 t yr)}$

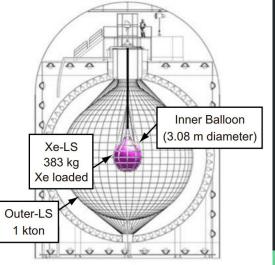

For a discovery, background rate in ROI $(Q_{\beta\beta} \pm 1-2 \sigma)$ must be similar to signal rate

Signal Extraction and background shape uncertainty


GERDA: O(0.1) cts/ROI + simple shape


[Phys. Rev. Lett. 120, 132501 (2018)]

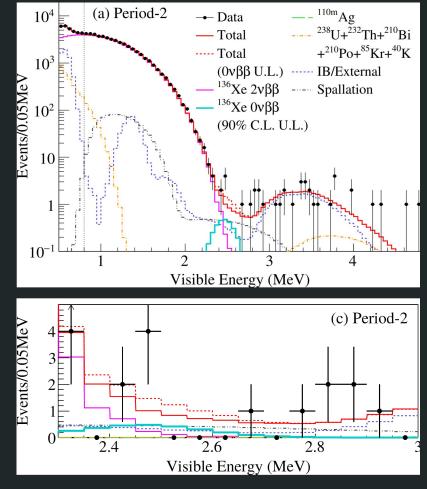
KamLAND-Zen: O(10) cts/ROI + complex shape


Most Sensitive Experiments

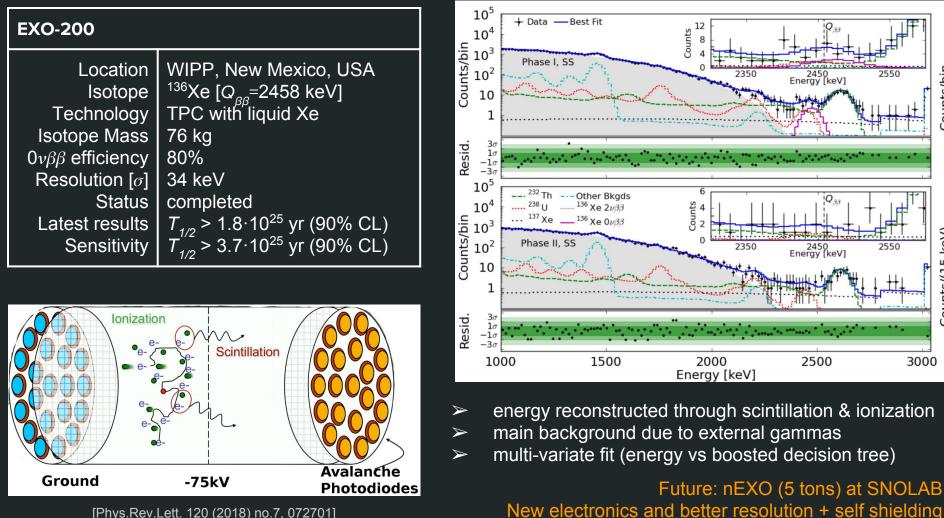
Detection	Large Liquid scintillator detectors	Time Projection	Cryogenic	Ge Semiconductor
Techniques		Chambers	Calorimeters	detectors
0 <i>νββ</i> Isotope	scintillator loaded with target isotope	Isotopically	crystals isotopically	crystals isotopically
Deployment		enriched xenon	enriched	enriched
Event Reconstruction	scintillation photons	scintillation photons and ionization electrons	temperature variation and scintillation	ionization electron-hole clusters
Background Mitigation	self-shielding and fiducialization	self-shielding, fiducialization, pulse shape analysis	energy resolution, array granularity	energy resolution, array granularity, pulse shape

KamLAND-Zen

Location Kamioka, Japan ¹³⁶Xe [Q_{ββ}=2458 keV] Isotope Xe-loaded liquid scintillator Technology Isotope Mass 350 kg $0\nu\beta\beta$ efficiency 16% 100-120 keV Resolution $[\sigma]$ Status commissioning next phase $T_{1/2} > 1.1 \cdot 10^{26}$ yr (90% CL) $T_{1/2} > 5.6 \cdot 10^{25}$ yr (90% CL) Latest results Sensitivity



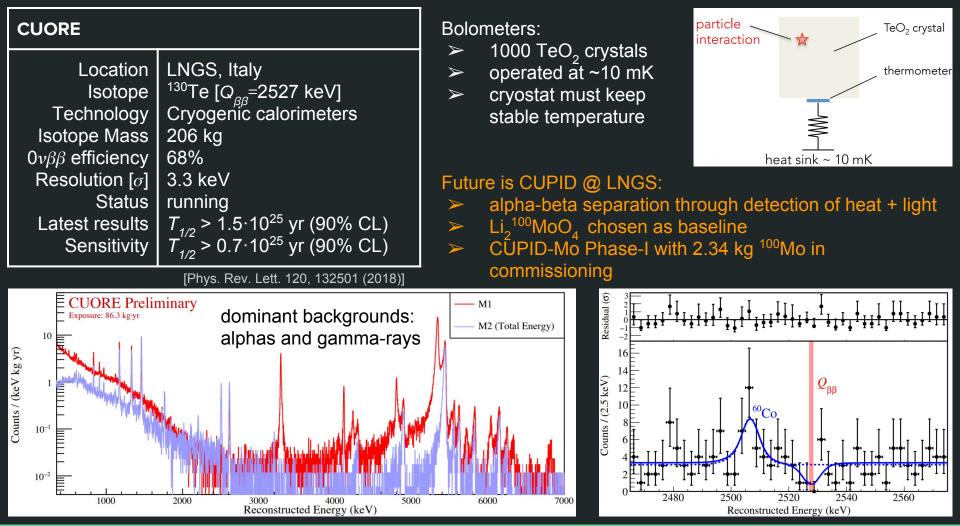
Next Phase KZ-800:


- > 750 kg of isotope
- New nylon balloon
- starting this year!

Future: KamLAND2-Zen:

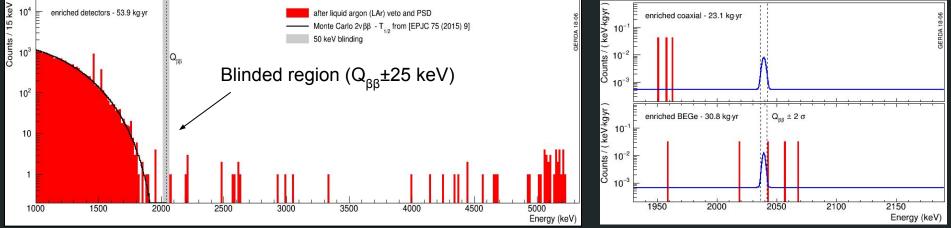
- 1 t of isotope
- improve resolution:
 brighter LS + new
 PMTs

[Phys.Rev.Lett. 117 (2016) no.10, 109903]


[Phys.Rev.Lett. 120 (2018) no.7, 072701]

25

Counts/bin


keV)

Counts/(15

M. Agostini (TU Munich)

GERDA		Ge detectors are operated in		n⁺ electrode (3-4 kV ↓	/) p ⁺ electrode ((
Location Isotope Technology Isotope Mass	⁷⁶ Ge [$Q_{\beta\beta}$ =2039 keV] Semiconductor Ge detectors 35 kg		-pure liquid Ar: shielding scintillates (veto system) pulse shape analysis	e^{-} e^{-} h^{+} h^{+}	p-type Ge
$0\nu\beta\beta$ efficiency Resolution [σ] Status Latest results Sensitivity	1.3 keV running	Futu	Ire is LEGEND: LEGEND-200 → 200 kg GERDA infrastructure (fur LEGEND-1000 → 1000 kg	nded and schedu) of detectors in a	led for 2021)
			(location not defined yet)		

M. Agostini (TU Munich)

25-50 mm

Mid-term and Long-term Projects

long torm

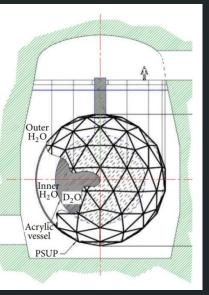
mid torm

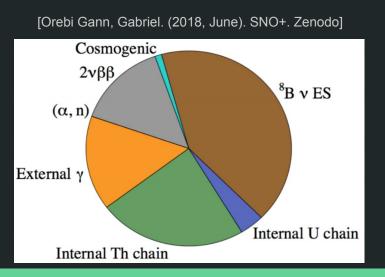
ourrent den

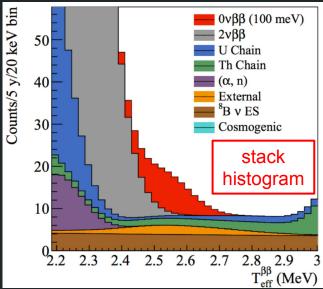
Major $Ov\beta\beta$ Projects

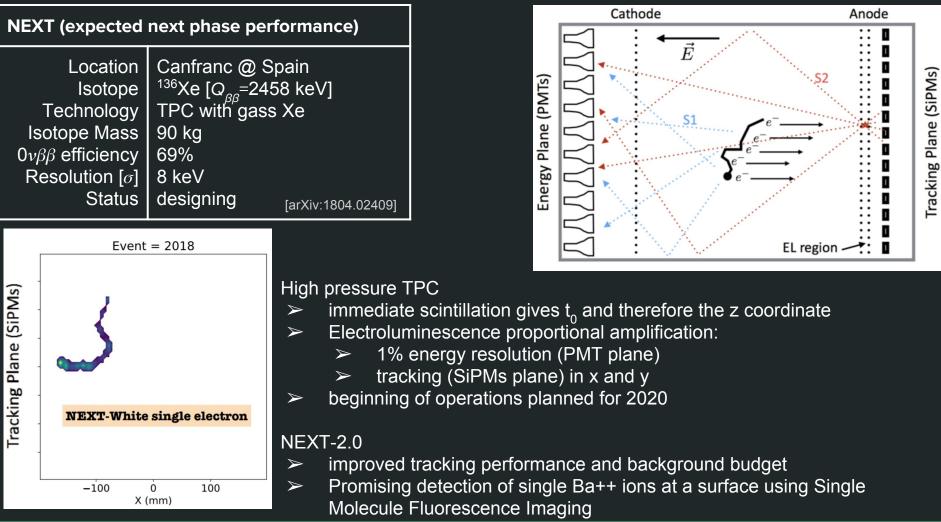
V = V = V = V = V = V = V = V = V = V =		current gen	mid-term	long-term
			-	
	Liquid scintillator	KZ	KZ-800 SNO⁺ phase I	KamLAND2-Zen SNO⁺ phase II
<u>Gas/Liquid detector</u>	Time Projection chambers	EXO NEXT-10	NEXT-100 PANDA-X-III	nEXO NEXT-2.0 PANDAX-III 1t
	Cryogenic Calorimeters	CUORE CUPID-0 AMORE	AMORE II	CUPID
Solid detectors	Ge semiconductor	GERDA MJD	LEGEND-200	LEGEND-1000
External detectors	Magnetized tracking	NEMO		SUPERNEMO

SNO⁺ (expected Phase I performance)

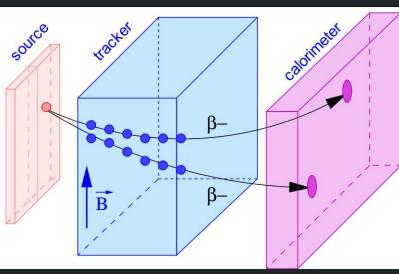

Location Isotope	SNOLAB, Canada ¹³⁰ Te [Q _a =2527 keV]
Technology	¹³⁰ Te [Q _{ββ} =2527 keV] Te-loaded liquid scintillator
Isotope Mass	1300 kg
$0\nu\beta\beta$ efficiency	12%
Resolution [σ]	81 keV
Status	commissioning first phase


Phase I


- 780 t LAB (+ PPO + Te-ButaneDiol)
- 0.5% loading -> 1300 kg ¹³⁰Te
- currently filled with water
- Filling with unloaded liquid scintillator later this year


Phase II

- Increase ¹³⁰Te concentration (8 t)
- Increase light yield, transparency, light detectors



SuperNEMO (expected performance)

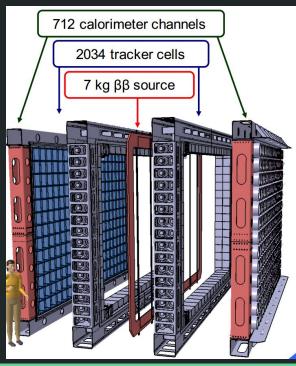
Location Isotope	Modan @ France
Technology	⁸² Se [$Q_{\beta\beta}$ =2995 keV] particle identification + track
Isotope Mass	100 kg
$0\nu\beta\beta$ efficiency	16%
Resolution [σ]	51 keV
Status	construction demonstrator

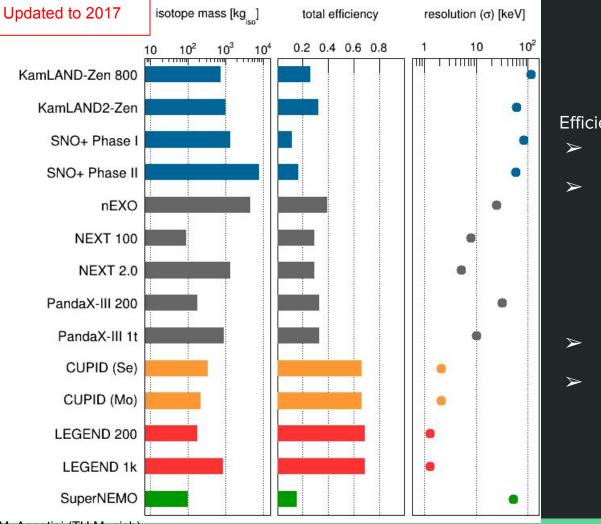
[Arnold et al., EPJC 70, 927 (2010)]

Unique features:

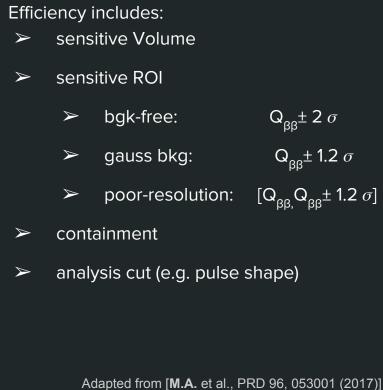
- simultaneous measurement of energy and electron direction (angular correlations)
- potential to discriminate among $Ov\beta\beta$ channels
- source embedded in foils separated from detector

Cons:

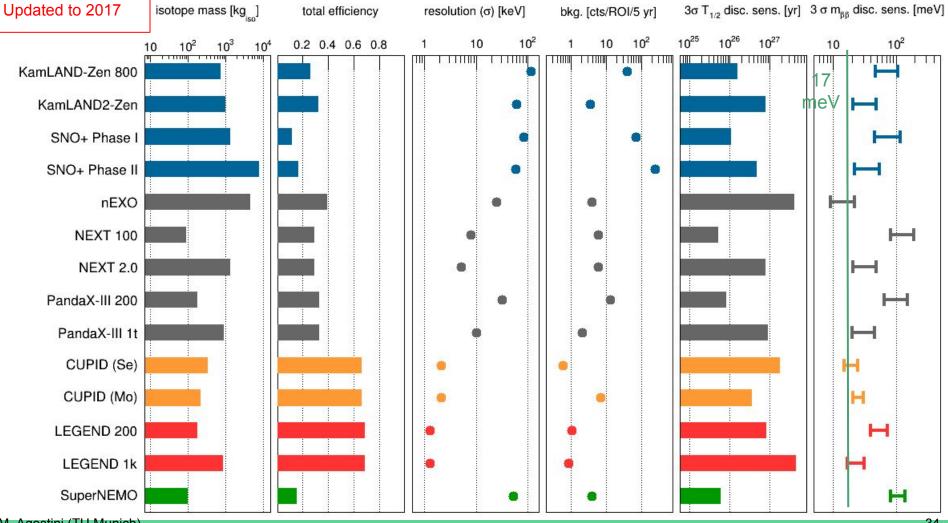

- Iow efficiency
- energy resolution and signal extraction


Phase 1:

- demonstrator module
- ➤ 6 kg of ⁸²Se
- commissioning and first data in 2018
- ➤ operations till 2020


Phase 2: 6 kg of ¹⁵⁰Nd

Phase 3: 100 kg scale goal



Exp Parameters

[Courtesy of Christoph Wiesinger]

Sensitivity

ROI yr)] 10 250 meV 100 meV 100 meV 250 me sensitive background [cts/ (kg EXO 200 CUORE SNO+ Phase I mLAND-10-KamLAND-Zen 800 SNO+ Phase II NEXT 100 Panda) **GERDA/Majorana** 10⁻² 200 **NEXT 1.5**k KamLAND2-Zen PandaX 1k LEGEND 200 10⁻³ **nEXO** CUPID (Te) 5 meV LEGEND 5 meV 10^{-4} 5 meV 10 10^{2} 10³ 10³ 10⁶ 10³ 10⁵ 10⁴ 10⁵ 10⁶ 10² 10⁵ 10² 10⁴ 10⁴ 10⁶ sensitive exposure for Ge^{76} [kg_{iso} yr] sensitive exposure for Te¹³⁰ [kg_{iso} yr] sensitive exposure for Xe^{136} [kg yr]

Ge experiments

Te experiments

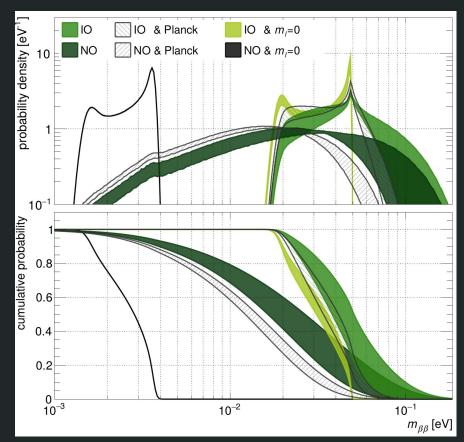
- > staged approach
- each stage background free
- limited by existing setups
 CUPID baseline with Mo

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

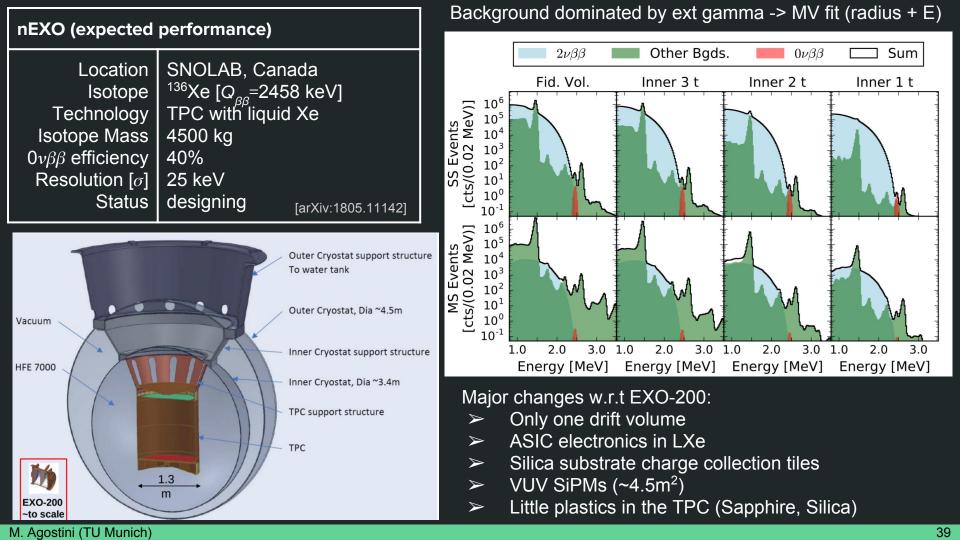
Xe experiments:

- background reduction by self-shielding
- towards background free

Conclusion and Outlook

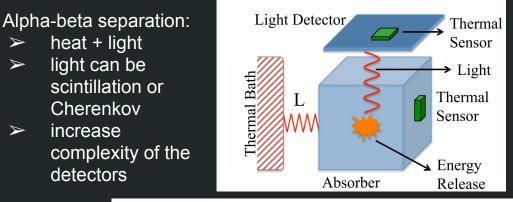

- \succ 0v $\beta\beta$: matter creating process measurable in the lab
- Strong implications for particle physics, cosmology and neutrinos. Important not to focus on a single mechanism!
- Huge experimental effort, many ton-scale experiments in preparation
- The discovery probability of next-generation experiment is high and a discovery could be around the corner. Important to keep on increasing the T_{1/2} sensitivity for each isotope
- Variety of the field is a strength! Absolutely needed to observe the signal in multiple isotopes and with different experimental techniques

Backup slides


Probability density from global fits

- > data in the analysis: oscillations + $0v\beta\beta$ + (cosmology)
- bands shows deformation due to NME uncertainty
- > $0v\beta\beta$ constraints on $m_{lightest}$ competitive with cosmology

Bulk of probability at reach with next generation experiments


[M.A., G Benato and J A Detwiler, Phys. Rev. D 96, 053001 (2017)] see also [A Caldwell et al, Phys.Rev. D96 (2017) no.7, 073001]

CUPID (expected performance)		
Location	LNGS, Italy	
Isotope	100 Mo [$Q_{\beta\beta}$ =2527 keV]	
Technology	scintillating calorimeters	
Isotope Mass	212 kg	
$0\nu\beta\beta$ efficiency	69%	
Resolution [σ]	2.1 keV	
Status	R&D	

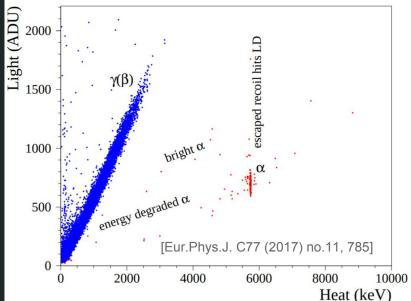
pursued R&D for a future background-free experiment:

- ¹³⁰TeO₂ [heat + Cherenkov light] alpha-beta separation achieved with CUORE-size crystal and Neganov-Luke amplification
- Zn⁸²Se [heat + scintillation light] CUPID-0 running at LNGS, great background achieved
- Li₂¹⁰⁰MoO₄ [heat + scintillation light] CUPID-Mo Phase-I with 2.34 kg 100 Mo in commissioning

heat + light

light can be

Cherenkov


increase

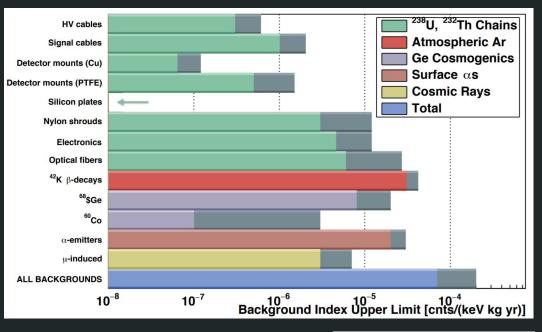
detectors

scintillation or

 \succ

 \succ

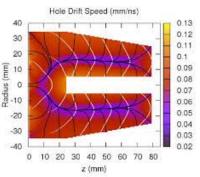
LEGEND (expected performance)


Location Isotope	LNGS, Italy (first phase) ⁷⁶ Ge [Q _{ββ} =2039 keV]
Technology	Semiconductor Ge detectors
Isotope Mass	174 kg
$0\nu\beta\beta$ efficiency	65%
Resolution $[\sigma]$	1.3 keV
Status	under design

LEGEND builds upon the successful experience of GERDA and MAJORANA:

- \succ GERDA \rightarrow LAr active veto system
- MAJORANA → low background material
 - → front-end electronics

Stages approach:


- ➢ LEGEND-200 → 200 kg of detectors in the current GERDA infrastructure
- ➤ LEGEND-1000 → 1000 kg of detectors in a new setup (location not defined yet)

From GERDA to LEGEND-200:

- new detectors (inverted coax)
- increased LAr veto efficiency
- Cleaner materials
- Improved electronics

Funding for L200 secured! Commissioning in 2020 Physics data taking in 2021

