

Summary of WP4: simulation results for the horn and the target spheres

Piotr Cupiał, Mateusz Kozioł

AGH University of Science and Technology

Krakow. Poland

Magnetic analysis

Magnetic flux B at $t = 50 \mu s$

Strasbourg, 08.11.2018

Magnetic analysis

Joule heating at $t = 50 \mu s$

Skin effect

Strasbourg, 08.11.2018

Horn support in the structural analyses

fixed displacement in all directions

lateral displacements fixed

Strasbourg, 08.11.2018

von Misses stress

Strasbourg, 08.11.2018

Results - location of the points

Strasbourg, 08.11.2018

von Misses stress vs. time

Horn with auxiliary equipment – EUROnu geometry

Horn with drainpipe

Modal analysis

Strasbourg, 08.11.2018

Motivation – granular (packed bed) target

Granular target proposed by P. Sievers at CERN (2001)

The pebble bed target studied at RAL (T.Davenne)

Transient temperature in a solid sphere

A sphere with radius a=1 mm is considered, with the following material properties (aluminium for test purposes, to be replaced by the constants of titanium):

K = 220 W/mK thermal conductivity

c = 900 J/kgK specific heat

 $\rho = 2.7 \cdot 10^3 \text{ kg/m}^3$ mass density

Transient temperature in a solid sphere

Film coefficient H=100 W/m²K

Film coefficient H=1000 W/m²K

Finite element model of a sphere

Free meshing with tetrahedral elements

Finite element vs. analtytical solution

Film coefficient H=1000 W/m²K

Ansys

Temperature in a sphere due to a heat pulse

Film coefficient H=100 W/m²K

Film coefficient H=1000 W/m²K

Termal stress in a sphere due to a heat source applied step-wise

Termal stress in a sphere – analytical vs. finite element solution

The values of thermal stress on the surface of a sphere with radius a=1 mm, at time t=20 s (the value of the film coefficient used was assumed to be H=100 W/m²K)

Analytical	ANSYS	Relative error (ANSYS-	
		analytical)/analytical	
69549 (Pa)	69054 (Pa)	-0.7%	

Natural frequencies of axisymmetric vibration of an elastic sphere – analytical solution

The frequency equation of axisymmetric vibration modes:

$$(\lambda + 2\mu) [(2 - k^2 a^2) \sin(ka) - 2ka \cos(ka)] + 2\lambda [ka \cos(ka) - \sin(ka)] = 0$$

$$\lambda = \frac{vE}{(1+v)(1-2v)}, \quad \mu = \frac{E}{2(1+v)}$$

$$\omega = \sqrt{\frac{\lambda + 2\mu}{\rho}}k$$

Natural frequencies of axisymmetric vibration of an elastic sphere – analytical solution

All natural vibration results are for a steel sphere with radius a=1 mm, with the following material properties: E=2.1·10¹¹ N/m², ν =0.3, ρ =7.8·10³ kg/m³.

Roots of the frequency equation of the symmetric modes:

ka : 2.6702, 6.0920, 9.3009, 12.4743

The natural frequencies in Hz:

 $f: 2.5584 \cdot 10^6 \text{ Hz}, 5.8370 \cdot 10^6 \text{ Hz}, 8.9116 \cdot 10^6 \text{ Hz}, 11.952 \cdot 10^6 \text{ Hz}$

Natural frequencies – finite element vs. analytical solution

Lowest two natural frequencies of a steel sphere of radius a=1 mm (the sphere is unrestrained on its surface)

Analytical	ANSYS	Relative error
$f_1 = 2.5584 \cdot 10^6 \text{ Hz}$	$f_1 = 2.5559 \cdot 10^6 \text{ Hz}$	-0.1%
$f_2 = 5.8370 \cdot 10^6 \text{ Hz}$	$f_2 = 5.8424 \cdot 10^6 \text{ Hz}$	0.1%

Fot the discussion of the non-radial vibration see the presentation during WP4

Some future work

- Vibration transmission from the horn to the cooling piping
- The performance of the horn cooling system
- > Fatigue life estimate of the horn and the spheres
- > Thermal stress and wave propagation in a pebble bed target using composite material and numerical approach
- Target cooling issues
- Environmental effects (radiation damage, cavitation, etc.)