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Motivation
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I analysis in ν oscillation experiments:
compare data to distributions of neutrino events simulated
under different physics models (or parameters)

I typical issues:
required to generate large numbers of samples
from multi-dimensional parameter space
statistical precision of sampled distributions
needs to (significantly) exceed that of observed data

I most straightforward solution:
direct histogramming of large enough
MC samples
often impossible due to computational limits!

⇒ PISA



Introduction
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I PISA originally served as the “PINGU
Simulation & Analysis” framework

I fast methods to determine NMO sensitivity

I by today, it has involved into a much more general tool

v1

I factorise generation of
NMO templates:

flux × oscillation ⊗ detector
response

I manual parameterisation of
detector response

arXiv:1401.2046v1



What is PISA?
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a software framework developed by the IceCube collaboration...

... written in Python ...

... that has the goal of enabling physics analyses, by:

I providing commonly required functionality

I implementing tools to deal with (low-statistics) MC simulation

I taking care of reproducibility & documentation

I providing performance and accuracy



PISA architecture
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MC event reweighting technique
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I allows use of single set of MC events: calculate new event weight
each time value of physics or nuisance parameter changes

I possible for independent physics processes
(here: ν production, oscillation, detection, reconstruction)

I binning events in observable dimensions = MC integration

I Kernel Density Estimation (KDE):
I smoothed distribution as weighted sum over kernel functions

placed at each event’s reconstructed observables
I here: Gaussians with variable bandwidth

accuracy ∝ 1/
√

N

⇒ common practice:
smoothing of event

distributions
neutrino oscillation experiment



Staged approach
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I alternative to the two standard event reweighting variants

I introduce stages to reflect independent processes occurring in
experiment

I exploit computational simplifications where possible

I stages calculate transformations on a grid

template =
flux × osc. prob. ×

eff. area ⊗ resolutions

⇒ applied differentially ⇒ grid choice adapted
to each stage

⇒ exploit caching



Staged approach: operating modes
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I flux computed from tabulated data, oscillation probabilities from
(semi-)analytic formulae

I MC events only required for detector response stages

I can select suitable smoothing methods adapted to physics of stage

⇒ increases effective amount of MC statistics



Stages & data structure in PISA
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I stages represent different physics effects,
interfaced with each other within a pipeline

I a service is a concrete implementation of a
stage

I modular structure⇒ transparent modification of
pipeline and exchange of services

(e.g. Prob3++⇔ nuSQuIDS for oscillations)

I each service has associated parameters:
defined in a pipeline config file

fitting procedure:
change parameter(s)

→ re-run pipeline
→ compare template

I data (e.g. MC sample) represented
by numba SmartArrays, passed on
from each stage

I flexibly transform between binned
(map) and unbinned (events) data
representations



PISA: Not just a “fitter”
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I apart from core modules and (high-level) routines for performing
physics analyses, PISA provides lots of (lower-level) utility modules
which make the user’s life much easier, e.g.:

advanced configuration file parsing
--------

comparison tools
⇒ hashing + caching at chosen floating point precision

--------
consistent + reproducible random number generation

--------
generic & clever file I/O

--------
profiling & logging

--------
etc.



A toy NMO analysis
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I employ parametric toy detector model to validate staged approach

I obtain “typical” NMO asymmetry
signatures in cascade- and track-like
events (signed binwise

√
χ2)

effective mass/area vs.
true neutrino energy

energy resolution &
event classification vs.

true/reco’d neutrino energy



Validation of detection stage
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I approach: sample N MC events from unbinned toy distributions
I staged approach:

1. evaluate detector’s effective areas on fine grid in true (energy, cosine zenith)

2. apply Gaussian smearing along 2D grid

3. apply cubic splines along energy and cosine zenith (sequentially)

4. multiply by oscillated fluxes

I direct histogramming: directly bin event weights in true
(energy, cosine zenith)

I compare to parametric
reference distribution
(“truth”)

⇒ staged approach w/
smoothing shows good
agreement even for very
small sample size



Characterising reconstruction resolutions
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I detector resolution functions constructed from same MC events

I subsequent integration yields transformation:
(Etrue,cosϑtrue) → (Ereco,cosϑreco,event classification)

I small MC amounts critical due to high dimensionality of transformation

I advantageous to characterise quantities with reduced dependency
on true variables

true variables

reconstructed
variables event class 1 event class 2



Validation of final-level templates
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I generate single 1d resolution
function per input-output
coordinate

I found adaptive (variable
bandwidth) KDE to outperform
other smoothing methods

I ideally finely subdivide dependent dimensions (here: Etrue,cosϑtrue),
but trade-off with MC statistics
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⇒ templates from staged
approach w/ smoothing
considerably more
accurate than from direct
hist.



Final-level template comparison
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I final-level templates of the three different methods and truth,
for one MC event sample of size 104

⇒ only the staged approach passes the “eye test”



Results of toy NMO analysis
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I perform fit of IO template to NO Asimov

template and record
√
χ2 as sensitivity proxy

I compare (distributions of) predictions of the
three methods to true significance

I repeat for different MC sample sizes
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Staged approach
Direct KDE
Direct hist.

less than one MC event per

final-level template bin

I require ∼ 107 MC events
for direct hist.

I some improvement from
direct KDE, but too slow
for larger sample sizes

I staged approach:
amount of MC needed
is reduced by orders of
magnitude



Timing benchmarks
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I usefulness of given analysis method also crucially dependent on
duration of computation (here: template generation)

I staged approach only dependent on MC sample size for start-up

I direct hist. fast but biased for small sizes

I direct KDE impractical to use for large sizes
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PISA NMO Analysis with JUNO + PINGU
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Transform
Transform Input

Stage
Output

⇒ tools for combining different
types of experiments, with joint

& separate systematics

(to be
published)

signal-less
cosine-zenith

interval

single-reactor
energy spectrum

two separate pipelines!



Summary
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I PISA software:

I from a map/histogram-based simulation/fitting tool tailored to
PINGU NMO to a general-purpose modular physics analysis
framework

I easily extendable staged approach with efficient smoothing
methods in place: mitigate low MC statistics/increase effective
amount of MC

I template generation time independent of MC sample size
(excluding start-up costs)

I technical paper submitted to J. Comp. Phys.; preprint available at
arXiv:1803.05390

I code maintained by IceCube collaboration, not yet open-sourced...
stay tuned

https://arxiv.org/abs/1803.05390


Thank you for your attention!

© C. Givaga / Fotolia
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BACKUP



Grid points in staged approach
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I grid choice for stage transformations and stage outputs in toy
NMO analysis:

I staged approach w/o smoothing shown to converge to output
of direct histogramming (in asymptotic limit)



ν channel evolution across stages
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