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● Fully instrumented decay region 

K+  e→ + ν
e 

π0  large angle e→ + 

● ν
e
 flux prediction = e+ counting

● Monitor (~ inclusively) the decays in which  are produced
● “By-pass” hadro-production, PoT, beam-line efficiency uncertainties

Based on conventional technologies, aiming for a 1% precision on the ν
e 

flux

Monitored beams

Removes the leading source of uncertainty 
in  cross section measurements

To get the correct spectra and avoid swamping 
the instrumentation  needs a → collimated 
momentum selected hadron beam (only 
decay products in the tagger) 

 → Correlations with interaction radius allows 
an a priori knowledge of the  spectra
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Neutrino beams for precision physics: 
the ERC ENUBET project

The next generation of short baseline experiments for cross-
section measurements and for precision ν physics (e.g. sterile ν 
and NSI) should rely on:

 a direct measurement of the fluxes 
 a narrow band beam: energy known a priori from beam width
 a beam covering the region of interest from sub- to multi-GeV

~ 500 t neutrino 
detector @ 100 m 
from the target
 
e.g.ICARUS@FNAL 
or ProtoDUNE-
SP/DP@CERN

Length of the instrumented tunnel: 50 m

The ENUBET facility fulfills simultaneously all these requirements

Enhanced NeUtrino 
BEams from kaon Tagging

ERC-CoG-2015, G.A. 681647 
(2016-21)
PI A. Longhin, Padova 
University, INFN
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ENUBET goals and highlights

Recent achievements 
• end-to-end simulation of the hadronic 

beamline
• Updated physics performance
• Experimental results on the beamline 

instrumentation prototypes

Goal: demonstrate the technical feasibility and physics performance of a 
neutrino beam where lepton production at large angles is 
monitored at single particle level. 

Two pillars:
● Build and test with data a demonstrator of the instrumented decay tunnel
● Design/simulate the layout of the hadronic beamline
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The ENUBET beam line

 Proton driver: CERN (400 GeV), FNAL (120 GeV), J-PARC (30 GeV)
 Target: 1 m Be, graphite target. FLUKA.
 Focusing

o Horn: 2 ms pulse, 180 kA, 10 Hz during the flat top [not shown in fig.]
o Static focusing system: a quadrupole triplet before the bending magnet

 Transfer line
o Optics: optimized with TRANSPORT to a 10% momentum bite centered at 8.5 GeV/c
o Particle transport and interaction: full simulation with G4Beamline
o Normal-conducting magnets            2 quad triplets (15 cm wide, L < 2 m, B = 4 to 7 T/m)             

                                                                          1 bending dipole (15 cm wide, L = 2 m, B =1.8 T)
 Decay tunnel

o Radius: 1 m. Length: 40 m, low power hadron dump at the end of the decay tunnel
 Proton dump: position and size under optimization

Target and 
W screen

Collimators

1st quadrupole
triplet

2nd quadrupole
triplet

Dipole Instrumented decay tunnel

to proton dump

to ν
detector

•  7.4° bending
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The ENUBET beam line – particle yields
Focusing 

system
/pot
(10 -3)

K/pot
(10 -3)

Extraction 
length

π/cycle
(1010)

K/cycle
(1010)

Proposal (c)

Horn 97 7.9 2 ms (a) 438 36 x 2
“static” 19 1.4 2 s (b) 85 6.2 x 5

(a) 2 ms at 10 Hz during the flat top (2 s) to empty the accelerator after a super-cycle.
(b) Slow extraction. Detailed performance and losses currently under evaluation at CERN 
(c) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155.

Advantages of the static extraction:
• No need for fast-cycling horn
• Strong reduction of the rate in the instrumented decay tunnel
• Monitor the  after the dump at % level (flux of νμ from ) [NEW: under evaluation]

• Pave the way to a “tagged neutrino beam”, namely a beam where the neutrino
interaction at the detector is associated in time with the observation of the lepton
from the parent hadron in the decay tunnel
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The ENUBET beam line: horn-based option
2 s flat top

• Machine studies @ SPS are currently on-going:

Preliminary studies Jul/Aug 2018
CERN-BE-OP-SPS, Velotti, Pari, Kain, Goddard

Slow extraction is induced
by going to the third integer 

betatron resonance with a 
periodic pattern

Proton current steps
in correspondance
of bunches

• Beam bunches in time with horn pulses
• Further studies   → understand radiation losses. 

Iterative corrections. Sextupoles: sharper bursts.
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The static beamline: emittance, particle content

p (GeV/c) p (GeV/c)

K+

+

Loss driven 
by decays

Low energy 
high angle 

Momentum bite

+

p
e+

+

p (MeV/c)

Particle budget
@ tagger entrance 

K+  @ tagger entrance               exit

1 m
radius

Divergence of the kaon beam

Spectra @ 
tagger entrance 
and exit
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The static beamline: FLUKA simulation
Assess the specs of rad-hard upstream focusing quadrupoles
Optimize shielding to: 
● reduce halos in the tagger region 
● suppress the decays of off-momentum mesons out of tagger acceptance

E deposition. 400 GeV/c p on target

FLUKA model (preliminary)

 tagger
Transfer line

 detector

   6x6x6 m3
shielding

Energy deposition (+ only)
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The ENUBET tagger

Calorimeter
Longitudinal segmentation
Plastic scintillator + Iron absorbers
Integrated light readout with SiPM

         → e+/π±/μ separation

K+

e+

π0

νe

Integrated photon veto
Plastic scintillators
Rings of 3×3 cm2 pads 

 → π0 rejection

e+ (signal) topology 0 (background) topology + (background) topology

Ultra Compact Module 
3×3×10 cm3 – 4.3 X0
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The tagger: shashlik with integrated readout

10 cm = 5 X
0
 

9 
cm

e+ 

t
0
-layer

CERN PS test beam Nov 2016
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Test beam results with shashlik readout

Ballerini et al., 
JINST 13 (2018) P01028

Calorimeter prototype performance with test-beam data @ CERN-PS T9 line 2016-2017

Tested response to MIP, e and 

• e.m. energy resoluton: 17%/√E (GeV)

• Linearity deviations: <3% in 1-5 GeV range

• From 0 to 200 mrad  no significant →
differences

• Work to be done on the fiber-to-SiPM 
mechanical coupling  dominates the non-→
uniformities 

• Equalizing UCM response with mips MC/data 
already in good agreement 

• longitudinal profiles of 
partially contained π 
reproduced by MC @ 10% 
precision
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SiPM irradiation studies
SiPM were irradiated at LNL-INFN with 1-3 MeV neutrons in Jun 2017

 → Characterization of 12,15 and 20 μm SiPM cells up to 1.2 x 1011 n/cm2 

1 MeV-eq (max non ionizing dose  for 104 νe
CC at a 500 t detector)

Irradiated SiPM tested at CERN in Oct 2017

A. Coffani et al.
arXiv:1804.03248

Electrons 
mip

● Mips can be used from channel-to-channel intercalibration even after the maximal irradiation. 
● Tests allowed tuning of scintillator thickness (or equivalently min p.e. yields) and 

compensation with overvoltage tuning.

Expected neutron doses (FLUKA)
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The tagger: lateral readout option

9 
cm

 

Light collected from scintillator sides and bundled to a single SiPM reading 10 fibers (1 UCM). 
SiPM are not immersed anymore in the hadronic shower   less compact but .. much → reduced 
neutron damage (larger safety margins), better accessibility, safer WLS-SiPM coupling.

Sampling calorimeter with 
lateral WLS light collection

May 2018, CERN-PS test beam
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Efficiency maps

e- energy resolution

Preliminary results

The Tagger – Detector R&D

Resolution, light yield, 
uniformity, optical coupling 
to photo-sensors, e/ 
separation. In progress.

September 2018 CERN-PS: a module with hadronic cal. for pion containment and integrated t
0
-layer

integrated t
0
-layer
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The photon veto – test beam

• / e+ discrimination + timing
scintillator (3×3×0.5 cm3) + WLS Fiber + SiPM

• light collection efficiency  >95%→
• time resolution  σ → ~ 400ps
• 1mip/2mip separation  

@ CERN-PS T9 line 2016-2018

La
ye

r 2

Layer 1

Trigger: PM1 + VETO +PM2


e+e-

charge exchange:   p  n →  (  → )
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Particle rates in the tunnel
Static focusing system

4.5 x 1013 pot in 2 s (400 GeV)
Calorimeter 1 m from the axis of the tunnel (Rinner=1.00 m)
Three radial layers of UCM (Router=1.09 m)

Rate vs longitudinal position in the tunnel

Rate vs the azimuthal
 angle in the tunnel

The bulk of the muons lies on the dipole
Bending plane  can be easily removed→



10 kHz / cm2
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Positron ID from K decay
Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018.
Includes particle propagation and decay, from the transfer line to the detector, hit-level detector 
response, pile-up effects.

Analysis chain

Event Builder

e// separation

e/separation

Identify the seed of the event (UCM with large energy 
deposit) and cluster neighboring modules (in time and space)
Multivariate analysis based on 6 variables (pattern of the 
energy deposition in the calorimeter) with TMVA
Signal on the tiles of the photon veto

εgeom 0.36

εsel 0.55

εtot 0.20

Purity 0.26

S/N 0.36
φ cut

0.46

F. Pupilli et al., PoS NEUTEL2017 (2018) 078

Instrumenting half of the decay tunnel: 
K

e3 
e+ at single particle level with a S/N = 0.46

M
in

im
al

 E
 d

ep
. (

M
eV

)

Purity x Efficiency (Ke3 e+)

Tagger z (cm)            
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Neutrino events per year at the detector
• Detector mass: 500 t (e.g. Protodune-SP or DP @ CERN, ICARUS @ Fermilab) 
• Baseline (i.e. distance between the detector and the beam dump) : 50 m 
• 4.5 x 1019 pot at SPS (0.5 / 1 y in dedicated/shared mode) or 1.5 x 1020 pot at FNAL 

1.2 million νμ Charged Current per year 14000 νe Charged Current per year

From pions

From kaons

 
e

98.4% from kaons
 contribution is small
(tunnel is “short”)

•  from K and arewell separated in energy (narrow band)

• 
e
 and  from K are constrained by the tagger measurement (K

e3
, mainly K2

).

•   from :  detectors downstream of the hadron dump (under study) 
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νμ CC events at the ENUBET narrow band beam
The neutrino energy is a function of the distance of the neutrino vertex from the beam axis. 
 

ra
di

us
 (m

)

E
ν
 (GeV) E

ν
 (GeV)

ν
μ 

CC in radial 

bins (1 norm.) 

σ(
E ν)/E

ν

radius (m)

The beam width at fixed R 
(  neutrino energy resolution) for ≡
the pion component is 

● 8 % for r ~ 30 cm, <E>~ 3 GeV
● 22% for r ~ 250 cm, <E> ~ 0.7 GeV

M
ean e nergy
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νμ CC events at the ENUBET narrow band beam
The neutrino energy is a function of the distance of the neutrino vertex from the beam axis. 
 

ra
di

us
 (m

)

E
ν
 (GeV) E

ν
 (GeV)

ν
μ 

CC in radial 

bins (1 norm.) 

Momentum of  


CC   on Ar. 

GiBUU 
generator 
(Gauss flux 
approx.)
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Conclusions
ENUBET is a narrow band beam with a high precision monitoring of the flux at 

source (O(1%)) and control of the E spectrum (20% at 1 GeV → 8% at 3 GeV)

2018 has been a special year, we have 
● provided the first end-to-end simulation of the beamline (Jul)
● Proved the feasibility of a purely static focusing system (106 νμ

CC , 104 νe
CC /y/500 t)

● full simulation of e+ reconstruction: single particle level monitoring. S/N ~ 0.5
● Tested with machine data the “burst” slow extraction scheme at the CERN-SPS (Aug)
● completed the test beams campaing (Sep) before LS2 

→ identified best options for instrumentation (shashlik and lateral readout)
● Strengthened the physics case: 

 → slow extraction + “narrow band off-axis technique”

The ENUBET technique is very promising and the results we got 
in the last twelve months exceeded our expectations
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Next steps
● In 2019 we need to:

• decide on the light readout technology for the final demonstrator 
(shashlik versus “lateral readout” )

• improve the design of the beamline to reduce beam halo 
contamination (current e+ S/N can be significantly improved)

• re-optimise the tunnel radius to increase geometrical acceptance

• Systematic assessment on predicted neutrino fluxes

• Develop new ideas to enhance precision also on νμ 

● from K2 
with  id in the tagger

● from  : counting  from  in hadron-dump (could be feasible with a 2s extraction).

• CDR at the end of the project (2021): physics and costing

• Build a demonstrator prototype of the tagger (2021)
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CERN Nov 2016

CERN Aug 2017

CERN Oct 2017

CERN Sep 2018

Milan Oct 2017

CERN May 2018

INFN-LNL Jun 2017

Padova June 2016

THANKS!
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ENUBET in the European strategy

The ENUBET mission is to demonstrate the feasibility of the tagged 
neutrino beam approach at CERN, J-PARC or FNAL (site independent).

Still... the protoDUNE prototypes would be ideal detectors for a future 
experiment: right mass, timeliness, redundancy from dual baseline, 
appropriate logistics, an opportunity for a coherent development of 
the original physics program (reduction of syst. for DUNE-HyperK).

~ to scale
(simply a sketch)

ENUBET

beamline

tagger
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The ENUBET beamline: “static” option

• Proton extraction scheme: Single slow extraction (2-4 s).
• Reference beam: 8.5 GeV/c, 10% momentum bite
• Quadrupoles: 15 cm wide, L < 2 m, B = 4 to 7 T/m
• Dipole: 15 cm wide, L = 2 m, B =1.8 T  → 7.4° bending
• Envelope at tunnel exit 50 ×50 cm (Tunnel radius 1m)

1m
50 cm

40 m decay tunnel

Optics optimized through TRANSPORT G4beamline

Beam envelope

“full simulation”  efficiencies, backgrounds→
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The static beamline: FLUKA simulation
Assess the specs of rad-hard upstream focusing quadrupoles
Optimize shielding to 
● reduce halos in the tagger region 
● suppress the decays of off-momentum mesons out of tagger acceptance

8.5 GeV/c parallel +

E deposition. 400 GeV/c p on target

FLUKA geometry (preliminary)

 tagger
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K+


e

e+

0



FLUKA

π+

The ENUBET monitored beam
● Hadron beam-line: charge selection, focusing, fast transfer of π+/K+

● Tagger: real-time, ''inclusive'' monitoring of K decay products

✔ With proper hadron focusing only K decay 
products are measured in the tagger being 
emitted at large angles (unlike pion decay 
products) allowing

✔ a complete control of produced ν
e 

using e+ 

from K
e3

 (~98%). Muon decays gives a small 
contribution thanks to the short tunnel (~50 m).

✔ tolerable rates / detector irradiation 
< 500 kHz/cm2, O(~1 kGy)

➢ p
K,π

 = 8.5 ± 20% GeV/c
➢ θ < 3 mrad over 10 x 10 cm2

➢ Tagger: L = 50 m, r = 40 cm
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The Tagger – positron ID from K decay

Event Builder
Seed of the event = UCM in first layer with energy 
deposit > 20 MeV  link neighboring modules with 
time (1ns) and position requirements

e/π separation
TMVA multivariate analysis based on 5(+6) variables 
(pattern of the energy deposition in the calorimeter)

Neural 
network

Response to signal and background

e/γ separation
π0 rejection: we require 3 layers of t0 before first calorimeter 
energy deposit compatible with a mip (0.65-1.7 MeV)
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