The ENUBET project

A. Longhin (Padova University and INFN) on behalf of the ENUBET Collaboration

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (G.A. n. 681647).


```
neutrino
```

Strasbourg, 5-6 Nov 2018

ENUBET: 52 physicists, 11 institutions

Monitored beams

Based on conventional technologies, aiming for a 1% precision on the v_e flux

protons
$$\rightarrow$$
 (K⁺, π^+) \rightarrow K decays \rightarrow e^+ v_e^- heutrino detector

- Monitor (~ inclusively) the decays in which ${\bf v}$ are produced
- "By-pass" hadro-production, PoT, beam-line efficiency uncertainties

	Removes the leading source of uncertain		
 Fully instrumented decay region 	in v cross section measurements		
$K^{+} \rightarrow e^{+}v_{e}^{-} \Pi^{0} \rightarrow large angle e^{+}$	To get the correct spectra and avoid swamping the instrumentation \rightarrow needs a collimated		
 v_e flux prediction = e⁺ counting 	<pre>momencum selected nadron beam (only decay products in the tagger) → Correlations with interaction radius allows</pre>		
	an a priori knowledge of the v spectra		

Neutrino beams for precision physics: the ERC ENUBET project

The next generation of **short baseline** experiments for **crosssection** measurements and for **precision v physics** (e.g. sterile v and NSI) should rely on:

- \checkmark a direct measurement of the fluxes
- ✓ a narrow band beam: **energy known a priori** from beam width
- ✓ a beam covering the region of interest **from sub- to multi-GeV**

Enhanced NeUtrino BEams from kaon Tagging

ERC-CoG-2015, G.A. 681647 (2016-21) PI A. Longhin, **Padova University, INFN**

> ~ 500 t neutrino detector @ 100 m from the target

e.g.ICARUS@FNAL or ProtoDUNE-SP/DP@CERN

3

ENUBET goals and highlights

Goal: demonstrate the technical feasibility and physics performance of a neutrino beam where **lepton production at large angles is monitored at single particle level.**

Two pillars:

- Build and test with data a **demonstrator** of the instrumented decay tunnel
- Design/simulate the layout of the hadronic beamline

Recent achievements

- end-to-end simulation of the hadronic beamline
- Updated physics performance
- Experimental results on the beamline instrumentation prototypes

to v detector triplet

- Proton driver: CERN (400 GeV), FNAL (120 GeV), J-PARC (30 GeV)
- <u>Target</u>: 1 m Be, graphite target. FLUKA.
- Focusing
 - **Horn**: 2 ms pulse, 180 kA, 10 Hz during the flat top *[not shown in fig.]*
 - **Static focusing system**: a quadrupole triplet before the bending magnet
- Transfer line
 - $\circ~$ Optics: optimized with TRANSPORT to a 10% momentum bite centered at 8.5 GeV/c
 - Particle transport and interaction: full simulation with G4Beamline
 - Normal-conducting magnets
- 2 quad triplets (15 cm wide, L < 2 m, B = 4 to 7 T/m) 1 bending dipole (15 cm wide, L = 2 m, B = 1.8 T)

Decay tunnel

- Radius: 1 m. Length: 40 m, low power hadron dump at the end of the decay tunnel
- Proton dump: position and size under optimization

The ENUBET beam line – particle yields

Focusing system	π/pot (10 ⁻³)	K/pot (10 ⁻³)	Extraction length	п/сусle (10¹º)	K/cycle (10 ¹⁰)	Proposal ^(c)
Horn	97	7.9	2 ms ^(a)	438	36	x 2
"static"	19	1.4	2 s ^(b)	85	6.2	x 5

(a) 2 ms at 10 Hz during the flat top (2 s) to empty the accelerator after a super-cycle.
(b) Slow extraction. Detailed performance and losses currently under evaluation at CERN
(c) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155.

Advantages of the static extraction:

- No need for fast-cycling horn
- Strong reduction of the rate in the instrumented decay tunnel
- Monitor the μ after the dump at % level (<u>flux of v_µ from π </u>) [NEW: under evaluation]
- Pave the way to a "**tagged neutrino beam**", namely a beam where the neutrino interaction at the detector is **associated in time** with the observation of the **lepton from the parent hadron in the decay tunnel**

The ENUBET beam line: horn-based option

• Further studies → understand radiation losses. Iterative corrections. Sextupoles: sharper bursts.

A. Longhin - ENUBET

Proton current

The static beamline: emittance, particle content

The static beamline: FLUKA simulation

Assess the specs of **rad-hard upstream focusing quadrupoles** Optimize shielding to:

- reduce halos in the tagger region
- suppress the decays of off-momentum mesons out of tagger acceptance

The ENUBET tagger

Ultra Compact Module 3×3×10 cm³ – 4.3 X₀

Longitudinal segmentation Plastic scintillator + Iron absorbers Integrated light readout with SiPM

$\rightarrow e^{+}/\pi^{\pm}/\mu$ separation

Integrated photon veto Plastic scintillators Rings of 3×3 cm² pads → π⁰ rejection

A. Longhin - ENUBET

The tagger: shashlik with integrated readout

CERN PS test beam Nov 2016

GDR neutrino – 6/11/2018

Test beam results with shashlik readout

Calorimeter prototype performance with test-beam data @ CERN-PS T9 line 2016-2017

MC

Data

900F

800

700

600

500

400

300

200

100

UCM module n.

Tested response to MIP, e and π^-

- e.m. energy resoluton: 17%/√E (GeV)
- Linearity deviations: <3% in 1-5 GeV range
- From 0 to 200 mrad → no significant differences
- Work to be done on the fiber-to-SiPM mechanical coupling → dominates the nonuniformities

 longitudinal profiles of partially contained π
 reproduced by MC @ 10%
 precision

data

data e Cher. taq

data u Cher. tag

data π^{-} Cher. tag

SiPM irradiation studies

SiPM were irradiated at LNL-INFN with 1-3 MeV neutrons in Jun 2017

→ Characterization of 12,15 and 20 μ m SiPM cells up to **1.2 x 10**¹¹ n/cm² 1 MeV-eq (max non ionizing dose for 10⁴ v_e^{CC} at a 500 t v detector)

Expected neutron doses (FLUKA) Irradiated SiPM tested at CERN in Oct 2017 $({{\mathfrak B}^{1^2}}$ n/cm²) or kGy ---- inner laver 10¹² n/cm² Electrons 10⁴ mid her laver 10¹² n-1MeV-eg/cm² 10^{3} ner laver dose kGv 0.6 10² A. Coffani et al. 0.4 arXiv:1804.03248 10 0.2 20 60 80 40 100 Signal amplitude (mV) 40 50 60 70 80 90 100 r (cm)

• Mips can be used from **channel-to-channel intercalibration** even after the maximal irradiation.

 Tests allowed tuning of scintillator thickness (or equivalently min p.e. yields) and compensation with overvoltage tuning.

GDR neutrino – 6/11/2018

FBK HD-RGB 1x1mm² 12µm cell size

The tagger: lateral readout option

Light collected from scintillator sides and bundled to a single SiPM reading 10 fibers (1 UCM). SiPM are not immersed anymore in the hadronic shower \rightarrow less compact but .. much reduced neutron damage (larger safety margins), better accessibility, safer WLS-SiPM coupling.

May 2018, CERN-PS test beam

The Tagger – Detector R&D

September 2018 CERN-PS: a module with hadronic cal. for pion containment and **integrated t**_-layer

A. Longhin - ENUBET

GDR neutrino – 6/11/2018

Beam Energy [GeV]

3 3.5

The photon veto – test beam

0.6

0.8

Layer 1

0.5 cm(i.e. 0.012 X₀)

@ CERN-PS T9 line 2016-2018

- γ / e⁺ discrimination + timing scintillator (3×3×0.5 cm³) + WLS Fiber + SiPM
- light collection efficiency \rightarrow >95%
- time resolution $\rightarrow \sigma \sim 400 \text{ps}$
- 1mip/2mip separation

A. Longhin - ENUBET

0.2

Layer 2

0.6

0.4

0.2

Particle rates in the tunnel

Static focusing system 4.5 x 10¹³ pot in 2 s (400 GeV)

Calorimeter 1 m from the axis of the tunnel (R_{inner}=1.00 m) Three radial layers of UCM (R_{outer}=1.09 m)

Rate vs longitudinal position in the tunnel

The bulk of the muons lies on the dipole Bending plane \rightarrow can be easily removed

Positron ID from K decay

Full GEANT4 simulation of the detector, validated by prototype tests at CERN in 2016-2018. Includes particle propagation and decay, from the transfer line to the detector, hit-level detector response, pile-up effects.

E _{geom}	0.36		
٤ _{sel}	0.55		
٤ _{tot}	0.20		
Purity	0.26	cut	
S/N	0.36		0.46

Instrumenting half of the decay tunnel: $K_{e3}e^{+}$ at single particle level with a S/N = 0.46

Neutrino events per year at the detector

- **Detector mass**: 500 t (e.g. Protodune-SP or DP @ CERN, ICARUS @ Fermilab)
- **Baseline** (i.e. distance between the detector and the beam dump) : 50 m
- 4.5 x 10¹⁹ pot at SPS (0.5 / 1 y in dedicated/shared mode) or 1.5 x 10²⁰ pot at FNAL

- v_{μ} from K and π are **well separated** in energy (narrow band)
- v_{e} and v_{μ} from K are constrained by the tagger measurement (K_{e3}, mainly K_{µ2}).
- v_{μ} from π : μ detectors downstream of the hadron dump (under study)

A. Longhin - ENUBET

\boldsymbol{v}_{μ} CC events at the ENUBET narrow band beam

The neutrino energy is a function of the distance of the neutrino vertex from the beam axis.

ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

The beam width at fixed R (\equiv neutrino energy resolution) for the pion component is

- 8 % for r ~ 30 cm, <E_v>~ 3 GeV
- 22% for r ~ 250 cm, <E_y> ~ 0.7 GeV

v_µ CC events at the ENUBET narrow band beam

The neutrino energy is a function of the distance of the neutrino vertex from the beam axis.

A. Longhin - ENUBET

Conclusions

ENUBET is a **narrow band beam** with a high **precision monitoring** of the flux at source (O(1%)) and control of the E_v spectrum (20% at 1 GeV \rightarrow 8% at 3 GeV)

2018 has been a special year, we have

- provided the first **end-to-end simulation of the beamline** (Jul)
- Proved the feasibility of a purely static focusing system (10⁶ v_{μ}^{cc} , 10⁴ v_{e}^{cc} /y/500 t)
- full simulation of e⁺ reconstruction: single particle level monitoring. S/N ~ 0.5
- Tested with machine data the "burst" slow extraction scheme at the CERN-SPS (Aug)
- **completed the test beams** campaing (Sep) before LS2
 - \rightarrow identified best options for instrumentation (shashlik and lateral readout)
- Strengthened the **physics case**:
 - → slow extraction + "**narrow band off-axis technique**"

The ENUBET technique is **very promising** and the results we got in the **last twelve months exceeded our expectations**

Next steps

- In **2019** we need to:
 - decide on the light readout technology for the final demonstrator (shashlik versus "lateral readout")
 - improve the design of the beamline to reduce beam halo contamination (current e⁺ S/N can be significantly improved)
 - re-optimise the **tunnel radius** to increase geometrical acceptance
 - Systematic assessment on predicted neutrino fluxes
 - Develop new ideas to enhance precision also on v_µ
 - from $K_{\mu 2}$ with μ id in the tagger
 - from π : counting μ from π in hadron-dump (could be feasible with a 2s extraction).
 - CDR at the end of the project (2021): physics and costing
 - Build a demonstrator prototype of the tagger (2021)

Padova June 2016

CERN Aug 2017

CERN Oct 2017

INFN-LNL Jun 2017

THANKS!

CERN May 2018

CERN Sep 2018

Milan Oct 2017

GDR neutrino – 6/11/2018

A. Longhin - ENUBET

ENUBET in the European strategy

The ENUBET mission is to demonstrate the **feasibility** of the tagged neutrino beam approach at CERN, J-PARC or FNAL (site independent).

Still... the protoDUNE prototypes would be **ideal** detectors for a future experiment: right mass, timeliness, redundancy from dual baseline, appropriate logistics, an opportunity for a **coherent development of** the original physics program (reduction of syst. for DUNE-HyperK).

A. Longhin - ENUBET

GDR neutrino – 6/11/2018

The ENUBET beamline: "static" option

The static beamline: FLUKA simulation

Assess the specs of **rad-hard upstream focusing quadrupoles** Optimize shielding to

- reduce halos in the tagger region
- suppress the decays of off-momentum mesons out of tagger acceptance

The ENUBET monitored beam

• Hadron beam-line: charge selection, focusing, fast transfer of h⁺/K

26/06/2017, NUINT

• Tagger: real-time, "inclusive" monitoring of K decay products

- With proper hadron focusing only K decay
 products are measured in the tagger being emitted at large angles (unlike pion decay products) allowing
 - a complete control of produced v_e using e⁺
 from K_{e3} (~98%). Muon decays gives a small
 contribution thanks to the short tunnel (~50 m).
 - tolerable rates / detector irradiation
 < 500 kHz/cm², O(~1 kGy)

- > p_{K,n} = 8.5 ± 20% GeV/c
- θ < 3 mrad over 10 x 10 cm²
- Tagger: L = 50 m, r = 40 cm

ENUBET, A. Longhin

The Tagger – positron ID from K decay

Response to signal and background

