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Neutrino Decay
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 Heavier neutrinos in mass-eigenstate (2, 3) are not stable

This process is highly suppressed in SM

➔Very sensitive to new physics (e.g. LRSM)

• Standard Model expectation: 𝜏 = Ο(1043) yr𝑠

• L-R Sym. Model prediction:    𝜏 = Ο(1017) yr𝑠

for 𝑊𝐿-𝑊𝑅 mixing angle 𝜁 ~0.02

• Experimental lower limit:        𝜏 = Ο(1012) yr𝑠

3 Lifetime
for m3=50meV

Also can get neutrino mass from photon energy: 𝑚3 = ൗ𝑚3
2 −𝑚1,2

2 2𝐸𝛾



Cosmic neutrino background (C𝜈B)

CMB
(=Photon decoupling)

𝒏𝜸 = 𝟒𝟏𝟏/𝐜𝐦𝟑

𝑻𝜸 = 𝟐. 𝟕𝟑 𝑲

~380,000yrs after the 

Big Bang

CB (=neutrino decoupling)
~1sec after the big bang 3

𝒏(𝝂𝟑 + ഥ𝝂𝟑)~ Τ𝟏𝟏𝟎 𝐜𝐦𝟑



COBAND (COsmic BAckground Neutrino Decay)

Search for Neutrino decay in Cosmic background neutrino

➔To be observed as photons in neutrino decays
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Expected photon wavelength spectrum from CB decays

50𝜇𝑚(25meV)
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Sharp Edge with 

1.9K smearing

𝒎𝟑 = 𝟓𝟎𝐦𝐞𝐕

E [meV]100 50 20 10 5

 distribution in ν3 → 𝜈2 + 𝛾

No other source has such a sharp edge structure!!
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𝜏 = 1 × 1014yr𝑠

𝒎𝟑 = 𝟓𝟎𝐦𝐞𝐕

Neutrino Decay signal and backgrounds
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We can identify the contribution from CB decay!!



Requirements for the photo-sensor in COBAND experiment
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Combination between diffraction grating and multi-pixel array 

of the following photo-sensor pixels:

• Can detect single far-infrared photon around =50m

• Dark count rate much less than expected real photon rate 

(300Hz)

A spectrometer which can measure photon-by-photon energy 

at better than 2% resolution for a far-infrared photon around 

=50m

Sensitive area of 100m100m for each pixel

OR



Superconducting Tunnel Junction (STJ)

A constant bias voltage (|V|<2Δ) is applied across the junction. 

A photon absorbed in the superconductor breaks Cooper pairs and creates 

tunneling current of quasi-particles proportional to the deposited photon energy.

Superconductor / Insulator /Superconductor

Josephson junction device

Δ: Superconducting gap energy

2

E

Ns(E)

Superconductor Superconductor

Insulator

• Much lower gap energy (Δ)  than FIR photon ➔ Can detect FIR photon

• Faster response (~s) ➔ Suitable for single-photon counting 
9
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STJ energy resolution for near infrared photon
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P. Verhoeve et. al 1997

◼ 30m sq. Ta/Al-STJ

◼ E~130meV @ E=620meV(=2m)

◼ Charge sensitive amplifier at room temp.

 Electronic noise ~ 100meV

In sub-eV ~ several-eV region, STJ gives the best energy resolution among 

superconductor based detectors, but limited by readout electronic noise.
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STJ candidates

Hf-STJ

• Not established as a practical photo-detector yet by any group

• Nq.p.=25meV/1.7Δ~ 735 E/E<2% for E=25meV

➔Spectrum measurement without a diffraction grating

➔Developing for a future satellite experiment
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Nb/Al-STJ

• Well-established
• Δ~0.6meV by the proximity effect from Al

• Operation temperature <400mK

• Back-tunnelling gain GAl~10

• Nq.p.=25meV/1.7ΔGAl~ 250 E/E~10% for E=25meV

➔25meV single-photon detection is feasible in principle

➔Developing for the rocket experiment

Si Nb Al Hf

Tc[K] 9.23 1.20 0.165

Δ[meV] 1100 1.550 0.172 0.020



Hf-STJ development
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We successfully made a device with 

SIS in 2010, and reduce leakage and 

observe response to laser pulse in 

2017, but need to suppress leakage 

further down to ~pA for practical 

usage.

200m sq. Hf-STJ in 2010

200𝜇𝑚 × 200𝜇𝑚

Hf-STJ(RMS=2.5nm)

200m200m

~25eV

T~140mK

200m sq. Hf-STJ in 2017



Proposal for COBAND Rocket Experiment

JAXA sounding rocket S-520

 Telescope with 15cm diameter and 1m focal length

 At the focal point, a diffraction grating covering =40-80m 
and an array of photo-detector pixels of 50() x 8() are 
placed.

 Each pixel has 100mx100m sensitive area.

Aiming at a sensitivity to 𝜈 lifetime for 𝜏 𝜈3 = Ο 1014 yr𝑠
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COBAND rocket experiment sensitivity
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S.H.Kim et. al (2012)

Mirizzi et. al (2007)

L-R SM =0.02, M(W2)=715GeV


m

3
1
2
 =

 2
.5

1

0
-3

e
V

2


m

i
<

 0
.2

3
e
V

COBAND rocket
200sec meas.

• 200-sec measurements with a sounding rocket

• 15cm dia. and 1m focal length telescope and grating in 40~80m range

• Each pixel in 100m100m850pix. array counts number of photons 

x100 improvement!
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Nb/Al-STJ development at CRAVITY 

Ileak~200pA for 50m sq. STJ, and achieved 50pA for 20m sq.

➔ This satisfies our requirement!

0.1nA

50m sq. Nb/Al-STJ fabricated at CRAVITY
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Nb/Al-STJ fabricated at CRAVITY has potential to far-infrared 

single photon detection with a cryogenic amplifier which can 

be deployed in close proximity to the STJ.



FD-SOI-MOSFET at cryogenic temperature
FD-SOI : Fully Depleted – Silicon On Insulator
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Both p-MOS and n-MOS show excellent performance at 3K and below.

~50nm

Channel Length : L

Channel 

Width : W

 Very thin channel layer in MOSFET on SiO2

 No floating body effect caused by charge 

accumulation in the body

 FD-SOI-MOSFET is reported to work at 4K
JAXA/ISIS AIPC 1185,286-289(2009)

J Low Temp Phys 167, 602 (2012)
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SOI prototype amplifier for demonstration test

T=350mK

Test pulse input through C=1nF at 

T=3K and 350mK

• Power consumption: ~100μW

• Output load: 1M and ~0.5nF

INPUT

OUTPUT
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Amplification of STJ response to laser pulse on cold stage

18

We connect 20m sq. Nb/Al-STJ and SOI amplifier on the 

cold stage through a capacitance 

STJ

10M
3He sorption

cold stage

T~350mK 

465nm laser 

pulse through 

optical fiber

GND

V
s
s

V
d

d4.7F

Cold amp. 

input monitor

Cold amp. 

output 

STJ SOI

4.7F



Amplification of STJ response to laser pulse on cold stage
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Demonstrated to show amplification of Nb/Al-STJ response to laser pulse 

by SOI amplifier situated close to STJ at T=350mK
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Development of SOI cryogenic amplifier for STJ signal readout 

is now moving to the stage of design for practical use !

T=350mK



Charge sensitive amplifier

20μA

10μA 2μA

20μA

Buffer 

stage

40μA

Telescopic 

cascode

Feed

back
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Response to charge injection
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Other R&D components for COBAND rocket experiment

Design of Telescope optics 
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Prototype rocket-borne 
3He sorption  refrigerator

FIR laser for STJ calibration

Design of antenna for STJ

Coupling of STJ with FIR photon



Summary

• We propose a sounding rocket experiment to search for 

neutrino radiative decay in cosmic neutrino background, 

followed by a future satellite experiment .

• Nb/Al-STJ array with a grating for the rocket experiment.

– Demonstrated STJ signal amplification by a prototype SOI amplifier at 

T~350mK

– Now we design and develop SOI cryogenic amplifier for practical use 

• Hf-STJ is under development for future satellite experiment

• Development of telescope optics, STJ with antenna, rocket-

borne refrigerator, and FIR laser source for STJ calibration 

are on going as well toward rocket experiment. 
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Backup

24



STJ current-voltage curve

Optical signal readout
➔ Apply a constant bias voltage (|V|<2Δ) 

across the junction and collect tunneling 
current of quasi particles created by photons

✓ Leak current causes background noise

Tunnel current of Cooper 
pairs (Josephson current) 
is suppressed by applying 
magnetic field

2Δ

Leak current

B field

I-V curve with light illumination

Voltage

Current

Signal current
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STJ back-tunneling effect

Photon

• Bi-layer fabricated with superconductors of different gaps 

Nb>Al to enhance quasi-particle density near the barrier

– Quasi-particle near the barrier can mediate multiple Cooper pairs

• Nb/Al-STJ   Nb(200nm)/Al(70nm)/AlOx/Al(70nm)/Nb(200nm)

• Gain: ～10

Nb Al NbAl

Si wafer
Nb

NbAl/AlOx/Al
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