A high-pressure xenon gas TPC detector AXEL to search for neutrino-less double beta decay

Kazuhiro Nakamura, Kyoto University

on behalf of the AXEL collaboration

Physics motivation

- Is neutrino Majorana particle or not?
 Important to validate:
 - Seesaw model
 - Leptogenesis model
- Neutrino-less double beta decay (0vββ)
 - Happens if neutrino is Majorana particle
 - BUT it is very rare event, even if it occurs... (half-life>10²⁶ years with ¹³⁶Xe^[1])
 - \rightarrow Large mass and very low-background is needed

2

Ονββ search

Signal of Ονββ

- Sum of two electron energy is equal to Q-value
- High energy tail of the standard double beta decay (2vββ) could become background
 → High energy resolution is required
- Requirements for inverted hierarchy search
 - Large mass (~1 ton)
 - Low background (<1 event/year)
 - High energy resolution (<1~2% FWHM)
 - →We are aiming to achieve these requirements with high pressure xenon gas TPC

Annu. Rev. Nucl. Part. Sci. 2002. 52:115-51

AXEL experiment

• High pressure xenon gas TPC for $0\nu\beta\beta$ search

High pressure xenon gas TPC

- Good point
 - Scalable to large mass
 - High energy resolution
 - Small ionization W-value
 - Linear amplification process (EL process)
 - ightarrow Fluctuation can be small

Similar concept experiment NEXT

- Pioneer experiment
- Separated EL readout
 - Energy measurement: PMTs
 - Tracking: SiPMs

We introduced a new idea "ELCC" for signal readout

5

Segmented EL readout: ELCC

- Tracking and Energy measurement with SiPMs in individual cells
 - Uniform response in wide area
 - Rigid structure
 - \rightarrow Scalability is good

Segmented EL readout: ELCC

Tracking and Energy measurement with SiPMs in individual cells

- Uniform response in wide area
- Rigid structure
- ightarrow Scalability is good

We have been studied it with simulation and prototype detector

Expected event topologies

- Track topology (Geant4 simulation)
 - $0\nu\beta\beta$: 2-blobs at the end
 - α -ray: small
 - γ-ray: multi-site interaction (98%)
 - \rightarrow Background rejection from event topologies

Simulation of ELCC

- Electric field calculation by elmer
 - All electric field lines are collected into cells when E_{EL}/E_{drift} is sufficiently large (E_{drift} =100 V/cm/atm, E_{EL} >2.5kV/cm/atm)

9

Position dependence of EL yield is 1.7% (rms)
 →Effect for the energy resolution is <0.005% (since the number of initial electrons is sufficiently large ~10⁵)
 electric field of ELCC (at y=0)

Optimization of cell configuration

 Hexagonal cell configuration is better for the collection of electric field (under same electric field and EL length)

10

Electron and photon propagation simulation

10L prototype detector

Motivation

- Proof-of-principle of ELCC
- Performance evaluation at 511keV

Conditions

- Sensitive region: φ10 cm× 9 cm
- Number of SiPMs: 64ch
- Gas pressure: 4 bar
- E_{drift}: 100 V/cm/atm
- E_{EL}: 2.7 kV/cm/atm

● SiPM

- Hamamatsu MPPC VUV3 sensitive to 170 nm
- Size: 3 mm square
- PDE: 23%

Event example

• Waveforms of MPPC's and PMT's

•EL light and scintillation light are observed

Analysis flow

Fiducial cut

- XY with hit channel, Z with PMT timing
- •EL gain correction
 - Calibrate each cell gains with 30 keV peak

- Dark current subtraction
 - Subtract dark count from EL waveform

Measured energy spectrum

• Four peaks are observed with ⁵⁷Co source

NIM, A 875 (2017) 185–192

Measurement of higher energy electron

- More photons are detected in one cell as gas pressure and electron energy are increased
 →Energy resolution could be worse because of the non-linear response of SiPMs
- Non-linearity is modeled with the pixel recovery time constant
- The recovery time was measured by a dedicated setup

IFD

Improvement of energy resolution

• Energy resolution is improved by correcting MPPC non-linearity

- ¹³³Ba 356 keV peak
- Energy resolution: **5.4%→2.5%**@356 keV

Energy resolution at Q-value

• Extrapolation to the Q-value (2.5 MeV)

- $A\sqrt{E+BE^2}$: 1.74% FWHM
- $A\sqrt{E}$: 0.82% FWHM

c.f. Our target is 0.5% (FWHM). The next setup is a measurement at higher energy.

Upgrade of the 10L prototype detector

•New ELCC and field cage for the higher energy measurement

- Hexagonal cell configuration (Electric field line correction efficiency is better)
- Double strip electrode (Good uniformity of the electric field, higher resistance to break down)
- PTFE ring structure (Reflection of the scintillation light)

Next prototype: 180L detector

Purpose

- Evaluation at Q-value (2.5 MeV)
- Tracking test
- Establishment of large-sized technology

Spec

- Fiducial volume: ~100 L
- Number of SiPMs: ~1000 ch
- Drift top voltage: 65 kV

Development of components is on going!!!

- Electronics
- HV supplement
- Cabling
- etc...

Electronics

- Multi channel with low cost
- Waveform acquisition at 5 MHz sampling for 500 μs
- •Wide dynamic range (full energy and 1p.e. measurement)
- Bias voltage can be set for each SiPM

New board testing is on going

HV supply for field cage

- Maximum voltage: 65 kV
 - Electric discharge will be a severe problem, especially at the feedthrough
 - \rightarrow Generate HV inside the chamber
- Cockcroft-Walton voltage generator
 - Flexible Print Circuit (FPC) to avoid outgas
 - Succeed to generate 10 kV with a prototype

Sensitivity estimation for 1 ton detector

- To cover all inverted-hierarchy region
 - Need to reach $m_{\beta\beta} = 20 \text{ meV}$
 - Background free (<1 event/year) is required
- Gamma absorption at 2.5 MeV gamma-ray [®]
 will be a severe background
 - 2.9 ppt ²¹⁴Bi in chamber (Upper limit of EXO's coper)
 - BG: 75 event/year \rightarrow m_{$\beta\beta$} = 72 meV

Sensitivity estimation for 1 ton detector

- Deep learning application
 - Learning with simulation $0\nu\beta\beta$ and gamma-ray data
 - Remaining background is 0.0044% when signal efficiency is 51.82%
 - BG: 7.9 event/year $\rightarrow m_{\beta\beta}$ = 36.6 meV

Additional reduction is still needed

Sensitivity estimation for 1 ton detector

Dominant background source

- Mass of pressure vessel is 10 ton

We will develop a low mass pressure vessel with high pressure water shield Active vessel with the PEN scintillator is also under consideration

Summary

- AXEL project is developing a high pressure xenon gas TPC for 0vββ search.
- ●Segmented EL readout (ELCC) is a key component.
 → We have been demonstrated it from a simulation and 10L prototype detector.
- Energy resolution extrapolated to 2.5 MeV is 0.82–1.74% FWHM.
- Construction of the next 180L prototype detector is on going.
- AXEL is aiming to reach to 20 meV sensitivity with some ideas.

Simulation of ELCC

• Electric field calculation by elmer

 All electric field lines are collected into cells when E_{EL}/E_{drift} is sufficiently large (E_{drift}=100 V/cm/atm, E_{EL}>2.5kV/cm/atm)

Simulation of ELCC

- Electric field calculation by elmer
 - Position dependence of EL yield is 1.7% (rms)
 →Effect for the energy resolution is <0.005% (since the number of initial electrons is sufficiently large ~10⁵)

Electric field strength along the line

Integral value distribution

