Thanks for the outstanding organization, the excellent food, and the nice excursion

International Symposium on Neutrino Frontiers'18 ICISE, Quy Nhon, VN, 19/07/2018

Status of DUNE

Anselmo Cervera Villanueva IFIC-Valencia

Deep Underground Neutrino Experiment

- Next generation neutrino oscillations experiment
 - Measure δ_{CP} and mass hierarchy in a single experiment
- Enabled for other physics w and w/o beam:
 - Beyond Standard Model (BSM) Physics, Nucleon Decay, SuperNova Bursts (SNB), etc

Anselmo Cervera Villanueva, IFIC-Valencia

International Symposium on Neutrino Frontiers'18

1300 Km baseline

Anselmo Cervera Villanueva, IFIC-Valencia

4

International Symposium on Neutrino Frontiers'18

> 1100 collaborators from 32 countries

May 2018 collaboration meeting

DUNE

Observed events

Neutrino Flux at 1300 km (CDR Optimized Beam)

Wide band beam, contrary to T2K and NOvA

Observed events

DUNE staging assumptions DUNE

• Staging scenario assumes equal v and \overline{v} running time.

Year	Number of FD modules	Total FD target mass (kt)	LBNF beam power (MW)	Exposure at year end (kt MW yr)
1	2	20	1.2	21
2	3	30	1.2	54
4	4	40	1.2	128
7	4	40	1.2	300
10	4	40	2.4	556

DUNE CDR Systematics

 Sensitivities in DUNE CDR are based on GLoBES calculations in which the effect of systematic uncertainty is approximated using signal and background normalization uncertainties.

Spectral uncertainty not included in this treatment.

- Signal normalization uncertainties are treated as uncorrelated among the modes (v_e , \overline{v}_e , v_{μ} , \overline{v}_{μ}) and represent the residual uncertainty expected after constraints from the near detector and the four-sample fit are applied.
 - $v_{\mu} = \overline{v}_{\mu} = 5\%$ Flux uncertainty after ND constraint
 - $v_e = \overline{v}_e = 2\%$ Residual uncertainty after v_μ and v/\overline{v} constraint

CDR sensitivities (2016)

• Fast MC and pseudo-reconstruction with tuned efficiencies

width of band indicates variation in possible central values of values of θ_{23}

Di

New MC Analysis (2018)

- GEANT4 beam simulation of updated beam design
- Full LArSoft Monte Carlo simulation
 - Shared framework among many LArTPC experiments
 - GENIE event generator
 - GEANT4 particle propagation
 - Detector readout simulation including realistic waveforms and white noise
- Automated signal processing and hit finding
- Automated energy reconstruction
 - Muon momentum from range (contained) or multiple Coulomb scattering (exiting)
 - Electron and hadron energy from calorimetry

Use <u>CVN techniques</u> <u>Convolutional Visual Networks</u>

Event selection performed by applying cuts on v_eCC -like and $v_\mu CC$ -like CVN classifiers

Improved sensitivities

- Sensitivity from MC-based analysis with full reconstruction chain exceeds sensitivity in Conceptual Design Report (CDR)
- Sensitivity plots will be updated soon

Sterile Neutrino Sensitivity Boosted dark matter (v_eCC appearance at Near detector) 10^{2}

10

∆m²₄₁ (eV²) ₀

10-2

 10^{-3}

10

DUNE

Simulation

DUNE 95% C.L.

MINOS 95% C.L.

.SND 90% C.L.

Kopp et al. (2013)

Daya Bay/Bugey-3 and

/iniBooNE 90% C.L.

Gariazzo et al. (2016) - NOMAD 90% C.L KARMEN2 90% C.L

MiniBooNE (v mode) 90% C.L

- Sterile neutrinos
- Non-standard interactions, non- unitary mixing, CPT violation
- Neutrino trident searches
- Large extra dimensions
- Neutrinos from dark matter annihilation in sun

13

 $\sin^2 2\theta_{\mu e} = 4 |U_{e4}|^2 |U_{\mu 4}|^2$

 10^{-2} 10^{-1}

Beyond Standard Model (BSM)

- DUNE sensitive to many BSM particles and processes
 - Light dark matter

SuperNova neutrinos

Expect 2-3 core-collapse supernovae in the Milky Way per century ≈ 3500 neutrinos in 40kt DUNE for SN at 10 Kpc.

In LArTPC, SNB signal dominated by electron neutrinos

$$V_{c} + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$

LAr uniquely sensitive to neutronization process at ~30ms

Fermilab

LBNF= Long Baseline Neutrino Facility

Near Detectors

LBNF Neutrino beam-line

International Symposium on Neutrino Frontiers'18

The LBNF beam

Anselmo Cervera Villanueva, IFIC-Valencia

Anselmo Cervera Villanueva, IFIC-Valencia

Near detector

- Constraint systematic uncertainties for LBL oscillation analysis
- ND Conceptual Design Report (CDR) planned for 2019
- Design concept is an integrated system composed of multiple detectors
 - Highly segmented LArTPC
 - Magnetized multi-purpose tracker
 - Electromagnetic calorimeter
 - Muon chambers
- Conceptual design will preserve option to move ND for off-axis measurements

Sanford Underground Research Facility (Lead, SD)

In the Homestake gold mine,

1.5 Km underground

Anselmo Cervera Villanueva, IFIC-Valencia

Sanford Underground Research Facility (Lead, SD)

Anselmo Cervera Villanueva, IFIC-Valencia

18

home of Ray Davis's solar neutrino experiment

SURF groundbreaking

Groundbreaking ceremony at 4850 ft level – July 21st 2017

Far detectors

• Four 10 Kton fiducial mass Liquid Argon TPCs

Far detectors: 1st module

22

Far detectors: 2nd module Diffe

Icarus x 20

Detector prototyping

 The single and dual phase technologies are being prototyped at CERN

3x1x1 prototype (WA105)

- Successful demonstration of Dual-Phase technology
- Operated at CERN between June and November 2017

26

ProtoDUNEs at CERN

March 2016

October 2016

ProtoDUNEs goals

- Prototyping production and (underground) installation procedures
- Validating the design from basic detector performance
- Accumulating large test-beam data for detector response understanding, calibration, dE/dx, PID etc.
- Demonstrating long-term operational stability

Single-Phase

3.6 m horizontal drift

Dual-Phase

6 m vertical drift

International Symposium on Neutrino Frontiers'18

Empty cryostat

<section-header>

APA 3.6 m CPA Field Cage

Field Cage

T-Gradient monitor

International Symposium on Neutrino Frontiers'18

ProtoDUNE cold box results DUNE

Promising results of APA wire noise in cold box

Anode Plane Assembly

Anselmo Cervera Villanueva, IFIC-Valencia

- DP Field Cage complete in April 2018
- Successful HV tests at 150 KV

International Symposium on Neutrino Frontiers'18

The test beam

Anselmo Cervera Villanueva, IFIC-Valencia

2018

ProtoDUNEs at CERN

2018	June-2018	
ProtoDUNEs at CERN	Pinsta	rotoDUNE-SP Ilation completed
	Aug-2018	
	Pr	rotoDUNE-SP LAr filling
	Sep-Nov 2018	
	Pr	otoDUNE-SP test beam
	Fall 2018	
	Pr instal	otoDUNE-DP lation completed

37

Outlook

- LBNF and DUNE making rapid progress on facility construction, detector design, and physics analysis
- New MC-based oscillation sensitivity analysis exceeds CDRlevel sensitivity to CP violation
- First look at ProtoDUNE pre-commissioning data is very promising
- Look for DUNE Technical Design Report and ProtoDUNE SP and DP results in 2019
- Expect first DUNE FD data in ~2024...

BACKUP SLIDES

ProtoDUNE en el CERN

Anselmo Cervera Villanueva, IFIC-Valencia

ProtoDUNE en el CERN

Anselmo Cervera Villanueva, IFIC-Valencia

International Symposium on Neutrino Frontiers'18

Another view

45

Inverted ordering Normal ordering 30 30 **DUNE Sensitivity DUNE Sensitivity** 7 years (staged) 7 years (staged) Normal Ordering Inverted Ordering 10 years (staged) 10 years (staged) $sin^2 2\theta_{13} = 0.085 \pm 0.003$ θ_{23} : NuFit 2016 (90% C.L. range) $sin^2 2\theta_{13} = 0.085 \pm 0.003$ θ23: NuFit 2016 (90% C.L. range) $sin^2 \theta_{23} = 0.441 \pm 0.042$ ····· sin²θ₂₃ = 0.587 ± 0.042 25ł 25ł 20 20 **∛15 ∛**15 10 10 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 δ_{CP}/π δ_{CP}/π

Anselmo Cervera Villanueva, IFIC-Valencia

International Symposium on Neutrino Frontiers'18

Resolution

DUNE/LBNF Staging Assumption

Year 1 (2026): 20-kt FD with 1.07 MW (80-GeV) beam and initial ND constraints

Year 2 (2027): 30-kt FD

Year 4 (2029): 40-kt FD and improved ND constraints

Year 7 (2032): upgrade to 2.14 MW (80-GeV) beam

Exposure Years	Number of FD modules	Total FD target mass (kt)	LBNF beam power (MW)	Exposure (kt MW yr)
1	2	20	1.07	21
2	3	30	1.07	54
4	4	40	1.07	128
7	4	40	2.14	300
10	4	40	2.14	556

Staging scenario assumes equal ν and $\bar{\nu}$ running time

Selection efficiency

Appearance Efficiency (FHC)

CVN v_e event selection efficiency similar to that from CDR Fast MC

Supernova event rates

 Expected total v signal from SNOwGLoBES). Solid lines are from Huedepohl (2010), for both 10 kt and the full 40 kt DUNE: systematic bands are from the Garching parameterization (2014) of <E>=12 MeV and <E>=2 (top) and <E>=8 MeV and <E>=6 (bottom).

Di

Table 5.1: Event rates for different supernova models in 40 kt of liquid argon for a core collapse at 10 kpc, for ν_e and $\bar{\nu}_e$ charged-current channels and elastic scattering (ES) on electrons. Event rates will simply scale by active detector mass and inverse square of supernova distance. The "Livermore" model assumes no oscillations; "GKVM" assumes collective oscillation effects. Oscillations (both standard and "collective") will potentially have a large, model-dependent effect.

Channel	Events	Events
	"Livermore" model	"GKVM" model
$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$	2720	3350
$\overline{\nu}_e + {}^{40}\operatorname{Ar} \to e^+ + {}^{40}\operatorname{Cl}^*$	230	160
$\nu_x + e^- \rightarrow \nu_x + e^-$	350	260
Total	3300	3770

• Engineering Run:

- Beam-line detectors activation and DAQ sync,
- Beam Trigger activation/test/debug,
- Secondary (Pion) Beam Intensity Tuning (measure/mitigation Muon Halo in LArTPC) ⇒ StartUp Physics Run

Physics Run

[expected 3000 spill/day]:

- ⇒Hadron Beam Goals:
 ≥ 500 k Pion evt per momentum setting
 ≥ 100 k Proton evt per momentum setting
- Electron Beam Goal:
- ≥ 75 k Electron evt per energy setting

Beam Setting (Mom, Sign)	Beam Rate		Beam Time
2 GeV/c - Negative	27 Hz	50% π -, 50% e-	1 week

	Hadron Beam	Cu Target	
Beam Setting (Mom, Sign)	Accumul. Stat. (goal)	Trig. Rate/Beam Rate	Beam Time
2 GeV/c - Positive	750 k [500 k π]	25 Hz / 38 Hz	1 week
3 GeV/c - Positive	750 k [500 k π]	25 Hz / 56 Hz	
no beam	-	-	1 week
1 GeV/c - Positive	1 Μ [500 k π]	25 Hz / 27 Hz	2 week
no beam	-	-	1 week
4 GeV/c - Positive	600 k [500 k π]	25 Hz / 196 Hz	
5 GeV/c - Positive	600 k [500 k π]	25 Hz / 200 Hz	2 week
6 GeV/c - Positive	600 k [500 k π]	25 Hz / 226 Hz	
7 GeV/c - Positive	600 k [500 k π]	25 Hz / 252 Hz	
no beam	-	-	1 week
	Electron Beam	Pb Target	
Energy Ramp: 0.5, 0.6, 0.7, 0.8, 0.9, 1., 2., 3., 4., 5., 6., 7. GeV	75 k per En. setting 900 k Tot.	25 Hz / 60 Hz	1.5 week

52

Dual-Phase

vertical drift

Dual-Phase

vertical drift

International Symposium on Neutrino Frontiers'18

Total Uncertainties Assigned to the Normalization Parameters

Based on the preceding considerations, the DUNE signal normalization uncertainty is taken to be 5% \oplus 2% in both neutrino and antineutrino mode, where 5% is the normalization uncertainty on the FD ν_{μ} sample and 2% is the effective uncorrelated uncertainty on the FD ν_{e} sample after fits to both near and far detector data and all external constraints. These signal normalization parameters are treated as 100% uncorrelated between neutrinos and antineutrinos. The normalization uncertainties on background to these samples and their respective correlations are given in Table 3.9. These assumptions for the non-oscillation systematic uncertainties are used to calculate the sensitivities presented in Section 3.2. The goal for the *total* uncertainty on the ν_{e} sample in DUNE is less than 4%, so the 5% \oplus 2% signal normalization uncertainty used for sensitivity calculations is appropriately conservative. Additionally, cancellation of the correlated portion of the uncertainty is expected in the four-sample fit, so the residual uncorrelated normalization uncertainty on the ν_{e} sample is expected to be reduced to the 1–2% level, such that the 2% residual normalization uncertainty used in the sensitivity calculations is also well-justified. Variations on these assumptions are explored in Section 3.6.3.

Background	Normalization Uncertainty	Correlations		
For $\nu_e/\bar{\nu}_e$ appe	earance:			
Beam ν_e	5%	Uncorrelated in ν_e and $\bar{\nu}_e$ samples		
NC	5%	Correlated in ν_e and $\bar{\nu}_e$ samples		
ν_{μ} CC	5%	Correlated to NC		
$\nu_{ au}$ CC	20%	Correlated in ν_e and $\bar{\nu}_e$ samples		
For $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance:				
NC	5%	Uncorrelated to $ u_e/\bar{\nu}_e$ NC background		
$ u_{ au}$	20%	Correlated to $ u_e/\bar{ u}_e \ u_{ au}$ background		

Table 3.9: Normalization uncertainties and correlations for background to the ν_e , $\bar{\nu}_e$, ν_{μ} , and $\bar{\nu}_{\mu}$ data samples

Systematics

Source of	MINOS	T2K	DUNE	Comments
Uncertainty	$ u_e$	$ u_e $	$ u_e$	
Beam Flux	0.3%	3.2%	2%	See "Flux Uncertainties" in Section 3.6.2
atter N/F				
Interaction Model	2.7%	5.3%	$\sim 2\%$	See "Interaction Model Uncertainties" in Section 3.6.2
Energy scale (ν_{μ})	3.5%	included above	(2%)	Included in 5% ν_{μ} sample normalization uncertainty in DUNE 3-flavor fit.
Energy scale (ν_e)	2.7%	2.5% includes all FD effects	2%	See " ν_e Energy-Scale Uncertainties" in Section 3.6.2
Fiducial volume	2.4%	1%	1%	Larger detectors = smaller uncertainty.
Total	5.7%	6.8%	3.6 %	
Used in DUNE Sensitivity Calculations			$\begin{array}{c} 5\% \oplus 2\% \\ \textbf{V}_{\mu} \textbf{V}_{e} \end{array}$	Residual ν_e uncertainty: 2%