

SPectroscopy with Atomic Neutrino: its principle and recent progress

Takahiro Hiraki, for the SPAN collaboration

Research Institute for Interdisciplinary Science (RIIS) Okayama University

14th Rencontres du Vietnam 19 July 2018 International Symposium on Neutrino Frontiers

Introduction

known and unknown properties of neutrino

}

known properties

- PMNS mixing angle
- squared mass difference
- (Dirac CP phase)
- (Mass ordering)

 $\sin^2(\theta_{12}) = 0.307 \pm 0.013$ $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$ $\sin^2(\theta_{23}) = 0.421^{+0.033}_{-0.025}$ $(S = 1.3)$ (Inverted order, quad. I) $sin^2(\theta_{23}) = 0.592^{+0.023}_{-0.030}$ $(S = 1.1)$ (Inverted order, quad. II) $sin^2(\theta_{23}) = 0.417^{+0.025}_{-0.028}$ $(S = 1.2)$ (Normal order, quad. I) $\sin^2(\theta_{23}) = 0.597^{+0.024}_{-0.030}$ $(S = 1.2)$ (Normal order, quad. II) $\Delta m_{32}^2 = (-2.56 \pm 0.04) \times 10^{-3}$ eV² (Inverted order) $\Delta m_{32}^{2^-} = (2.51 \pm 0.05) \times 10^{-3} \text{ eV}^2$ $(S = 1.1)$ (Normal order) $\sin^2(\theta_{13}) = (2.12 \pm 0.08) \times 10^{-2}$

unknown properties

- absolute mass (only upper limit)
- mass type (Dirac or Majorana)
- (Majorana CP phase)
- etc.

key parameters for particle physics and cosmology

- BSM physics
- leptogenesis

3

PDG

Our approach to neutrino

 use atomic or molecular de-excitation process and techniques of laser spectroscopy

laboratory in Okayama University

table-top experiment interdisciplinary science

- areas of expertise
- High energy physics
- nuclear physics
- AMO (atomic, molecular and optical) physics
- chemistry
- theorists

Experimental principle

Radiative Emission of Neutrino Pair (RENP)

$$
|e\rangle \rightarrow |g\rangle + \gamma + \nu + \bar{\nu}
$$

detection of a photon (easy) instead of neutrino (difficult)

Experimental principle

Radiative Emission of Neutrino Pair (RENP)

$$
|e\rangle \rightarrow |g\rangle + \gamma + \nu + \bar{\nu}
$$

energy level

 \checkmark The emitted photon contains information of neutrinos

Energy spectra of emitted photon⁷

 \checkmark Energy spectra are obtained by scanning the laser frequency

- Frequency resolution is much better than 1 GHz
- ➡ precise determination of neutrino absolute mass is possible

Amplification of emission rate

 e^-

 e^-

 $\mathcal V$

 $\boldsymbol{\nu}$

 $Z \n\begin{cases} 2 & \text{if } \mathcal{U} \neq \mathcal{U} \end{cases}$

- Critical issue of this method: **very tiny rate**
- typical emission rate $\ll 10^{-30}$ Hz
- transition includes weak interaction
- ➡ **rate amplification** by atomic coherence
	- obtained by using coherent photons (laser)

Simplified description

Huge enhancement can be achieved!

Rate Amplification ⁹

• Condition for rate amplification

proposed by M. Yoshimura (2007)

- If $\Delta k = 0$ holds, the emission rate $\propto N^2$ (rate amplification)
	- momentum conservation among initial and emitted particles
	- also coherence decay (decoherence) time should be long

Experimental demonstration of this principle is necessary

- Dirac/Majorana distinction : principally possible
	- effect of identical particle emission (Majorana)

Rate amplification experiment of two-photon emission (TPE) from para-H₂ molecule

11

para-H2 experiment ¹²

Motivation

- \checkmark study rate amplification mechanism using **two-photon emission** processes
	- much easier to observe than neutrino emission process

Properties of para-H₂

 \checkmark J=0 (ground state) para-H₂: completely spherical wavefunction **→** weak intermolecular interaction

➡ **long decoherence time** expected

coherent states of para-H₂

- \checkmark coherence between vibrational states $(v=0, J=0 \leftrightarrow v=1, J=0)$ of $pH₂$ molecules
- 1-photon electric dipole transition (E1 transition): **forbidden**
- 2-photon E1×E1 transition: **allowed** (2.4 μm)
	- \checkmark metastable excited state
		- spontaneous emission rate: $O(10^{-12})$ Hz
	- \checkmark decoherence time: $\mathcal{O}(1)$ ns (gas)
		- mainly due to molecular collision

0.52 eV

H H

|g⟩

v=0

v=1

|e⟩

Coherence generation scheme

Requirement for rate amplification: 4-momentum conservation

Overview of the para-H₂ **TPE experiment**

one-side laser excitation

 $\circled{1}$: para-H₂ gas experiment (2) : para-H₂ solid experiment

(difference is explained later)

counter-propagating laser excitation

solid para- H_2 cell cell length: 5 mm cooled to \sim 4 K

gas para- H_2 cell

15

 $\circled{3}$: para-H₂ gas experiment

Mid-infrared (MIR) laser generation 16

- developed **high-intensity and narrow-linewidth** MIR laser
	- used for **counter-propagating excitation** experiment

para-H₂ one-side **laser excitation experiment**

17

① para-H2 gas experiment ¹⁸

Rate amplification factor: (amplified rate)/(spontaneous emission rate) **>1018** Y. Miyamoto et al. Prog. Theor. Exp. Phys. **2014**, 113C01

② para-H2 solid experiment

- \checkmark solid para-H₂: called "Quantum solid" rotational and vibrational excited states exist even in solid
	- weak intermolecular interaction:

- no collisional broadening (cause of decoherence)

gas V.S. solid timing dependence

 \checkmark Coherence develops after the pump lasers exist

20

para-H2 counter-propagating laser excitation experiment

- Signal light is generated by the trigger laser and advances in the backward direction **0**
- amplification condition
- Wrong-polarization component of the background scattering light is reduced by using a polarized beam splitter.

Results: detuning dependence 23

• use the new mid-infrared laser as both pumps and trigger pump energy: ~1 mJ/pulse, trigger energy: ~ 0.6 mJ/pulse

 \checkmark Successfully observed a clear signal peak!

Results: detuning dependence 24

- comparison with simulation based on Maxwell-Bloch equations
- describe development of laser fields and coherence
- Though it is difficult to reproduce absolute signal intensity, curve shape is consistent between data and simulation.

Results: input energy dependence²⁵

 \checkmark vary the pump and trigger beam energies at the same time

both pump beams and trigger beam $I_{signal} \propto I_{pump1}I_{pump2}I_{trigger} \propto I^3$

trigger frequency dependence²⁶

Next step

Higher QED process²⁸

• study of coherent amplification of **higher QED** process - 2-photon E1×M1(magnetic dipole), 3-photon E1×E1×E1

- one of the candidates of the RENP experiment
- use metastable excited state
	- E1, E1×E1: forbidden
	- E1×M1, E1×E1×E1: allowed 5p6

Laser setup (Xe) 876 nm continuous-wave (cw)

29

Experiment will start soon!

Summary

para- H_2 experiment

- Rate amplification of two-photon emission process
- observed TPE signal and verified rate amplification mechanism experimentally
- further study ongoing (counter-propagating solid experiment) Xe experiment
- coherent amplification of higher-order QED processes
- Experiment will start soon

Future prospects

- Background study and reduction (2 or 3 photon emission)
- obtain higher emission rate
- RENP experiment

Back up

- Vibration or rotation of H_2 molecule are quantized
- \checkmark wavefunction of H₂

Coherent amplification condition³³

 \checkmark Energy-momentum conservation among photons Process: Two-photon emission (TPE)

Coherent amplification condition³⁴

 Energy-momentum conservation among photons+ν Process: Radiative emission of neutrino pair (RENP)

 \checkmark High-quality mid-infrared (4806 nm) laser is required.

Results: detuning dependence ³⁵

Results: Pressure dependence ³⁶

• vary the $pH₂$ target pressure

detuning curve

- Laser linewidth and pressure broadening determine the width
- Signal intensity increases as the target density larger.
- Consistent tendency is obtained between data and simulation.

Laser linewidth measurement

- measurement of the narrow-linewidth MIR laser
- method: absorption spectroscopy of carbonyl sulfide (OCS)

Laser linewidth 38

• observed absorption spectra

 \checkmark narrow laser linewidth (~1.6×FT-limit) is achieved.

Maxwell-Bloch equations

Development of the density matrix

$$
\frac{\partial \rho_{gg}}{\partial t} = \mathbf{i}(\Omega_{ge}\rho_{eg} - \Omega_{eg}\rho_{ge}) + \gamma_1 \rho_{ee},
$$
\n
$$
\frac{\partial \rho_{ee}}{\partial t} = \mathbf{i}(\Omega_{eg}\rho_{ge} - \Omega_{ge}\rho_{eg}) - \gamma_1 \rho_{ee},
$$
\n
$$
\frac{\partial \rho_{ge}}{\partial t} = \mathbf{i}(\Omega_{gg} - \Omega_{ee} + \delta)\rho_{ge} + \mathbf{i}\Omega_{ge}(\rho_{ee} - \rho_{gg}) - \gamma_2 \rho_{ge}.
$$

ρ: density matrix $\Omega_{\rm{gg(ee)}}$: two-photon Rabi frequency $\Omega_{\rm{eg}\mathrm{(ge)}}$: AC Stark shift $γ₁, γ₂$: relaxation rates δ: detuning

Development of the electric fields

$$
\begin{aligned}\n\left(\frac{\partial}{\partial t} - c\frac{\partial}{\partial z}\right) E_{\text{p1}} &= \frac{\mathrm{i}\omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee}) E_{\text{p1}} + 2\alpha_{eg}\rho_{eg} E_{\text{p2}}^* \right), \\
\left(\frac{\partial}{\partial t} + c\frac{\partial}{\partial z}\right) E_{\text{p2}} &= \frac{\mathrm{i}\omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee}) E_{\text{p2}} + 2\alpha_{eg}\rho_{eg} E_{\text{p1}}^* \right), \\
\left(\frac{\partial}{\partial t} - c\frac{\partial}{\partial z}\right) E_{\text{trig}} &= \frac{\mathrm{i}\omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee}) E_{\text{trig}} + 2\alpha_{eg}\rho_{eg} E_{\text{sig}}^* \right), \\
\left(\frac{\partial}{\partial t} + c\frac{\partial}{\partial z}\right) E_{\text{sig}} &= \frac{\mathrm{i}\omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee}) E_{\text{sig}} + 2\alpha_{eg}\rho_{eg} E_{\text{trig}}^* \right).\n\end{aligned}
$$

ω_i: laser frequency \mathcal{N}_t : target density α: polarizability

Theoretical studies

• Towards Background-free RENP using a Photonic Crystal Waveguide M.Tanaka et al. Prog. Theor. Exp. Phys. **2017** 043B03

