The vMSM, Dark Matter and Neutrino Masses

Takehiko Asaka (Niigata Univ.)

The 14th Rencontres du Vietnam, International Symposium on Neutrino Frontiers (16-19 July, 2018, ICISE center, Quy Nhon, Vietnam)

@Vietnam (2018/07/18)

Introduction

- Motivation
- \square The vMSM

Sterile Neutrino as Dark Matter

- Production
- Constraints
- Current status of sterile neutrino dark matter
- Search for sterile neutrino dark matter

Summary

Overview

Introduction

Takehiko Asaka (Niigata Univ.)

Origin of neutrino masses

- Neutrino mass scales
 - Atmospheric: $\Delta m_{\rm atm}^2 \simeq 2.4 \times 10^{-3} {\rm eV}^2$
 - **Solar** : $\Delta m_{\rm sol}^2 \simeq 7.5 \times 10^{-5} {\rm eV}^2$

\Rightarrow Clear signal for new physics beyond the SM !

- Important questions:
 - **D** What is the origin of neutrino masses?
 - What are the implications to other physics?
 - Below do we test it experimentally?

Neutrino masses by the seesaw mechanism

Higgs Boson	Quarks and Leptons		Gauge
	(left-handed)	(right-handed)	DUSUNS
h	$\begin{pmatrix} u \\ d \end{pmatrix}_L \begin{pmatrix} c \\ s \end{pmatrix}_L \begin{pmatrix} t \\ b \end{pmatrix}_L$	$u_R c_R t_R$ $d_R s_R b_R$	${g} Z^0$
	$\left(e \right) \left(\mu \right) \left(\tau \right)$	$e_{_R}$ $\mu_{_R}$ $ au_{_R}$	W^{\pm}
	$\left(\mathcal{V}_{e} \right)_{L} \left(\mathcal{V}_{\mu} \right)_{L} \left(\mathcal{V}_{\tau} \right)_{L}$		γ

Takehiko Asaka (Niigata Univ.)

Extension by RH neutrinos v_R

$$\delta L = i \overline{\nu_R} \partial_\mu \gamma^\mu \nu_R - F \overline{L} \nu_R \Phi - \frac{M_M}{2} \overline{\nu_R} \nu_R^c + \text{h.c.}$$

Minkowski '77 Yanagida '79 Gell-Mann, Ramond, Slansky '79 Glashow '79

• Seesaw mechanism $(M_D = F\langle \Phi \rangle \ll M_M)$

$$-L = \frac{1}{2} (\overline{v_L}, \overline{v_R^c}) \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \begin{pmatrix} v_L^c \\ v_R \end{pmatrix} + h.c = \frac{1}{2} (\overline{v}, \overline{N^c}) \begin{pmatrix} M_v & 0 \\ 0 & M_M \end{pmatrix} \begin{pmatrix} v^c \\ N \end{pmatrix} + h.c.$$

 \blacksquare Light active neutrinos ν

 \rightarrow explain neutrino oscillations

$$M_{v} = -M_{D}^{T} \frac{1}{M_{M}} M_{D}$$
$$U^{T} M_{v} U = diag(m_{1}, m_{2}, m_{3})$$

\square Heavy Neutral Leptons (Sterile Neutrinos) N

- $N \simeq \nu_R$
- Mass M_M
- Mixing $\Theta = M_D / M_M$ $\nu_L = U \nu + \Theta N^c$

Takehiko Asaka (Niigata Univ.)

Yukawa Coupling of HNL (Sterile v)

Yukawa Coupling of HNL (Sterile v)

Yukawa Coupling of HNL (Sterile v)

Takehiko Asaka (Niigata Univ.)

Mixing of HNL (Sterile v)

Various Physics of RH neutrinos

Roles of three HNLs in the vMSM

("Dark" HNL with 10 keV mass)

Dark Matter Candidate

 To avoid constraints, Yukawa coupling constants (mixing angles) should be very suppressed.

Neutrino Oscillation data

- Masses and mixings of active neutrinos
- Baryon Asymmetry of the Universe (BAU)
 - Mechanism via neutrino oscillation [Akhmedov, Rubakov, Smirnov '98, TA, Shaposhnikov '05, …]

Sterile Neutrino as Dark Matter

Takehiko Asaka (Niigata Univ.)

2018/07/18

16

Dark matter

- Cosmological parameters are well determined now !
 From CMBR anisotropy [Planck 2015]
 - $\Omega_{\rm dm} h^2 = 0.1188 \pm 0.0010$ $\Omega_{\rm dm} = \rho_{\rm dm}^0 / \rho_{\rm cr}$

 $h: H_0$ in units of 100km/sec/Mpc

Dark matter (25%) Dark energy (70%)

- Particle physics candidate
 - "dark" (charge neutral)
 - **•** stable within the age of the universe
 - \blacksquare its abundance should be $\Omega_{\rm dm}h^2$
 - avoids cosmological constraints
 - \rightarrow No candidate in the SM

$$(\tau > t_U \sim 10^{17} \text{sec})$$

Active Neutrino as Dark Matter?

Active Neutrinos as Dark Matter

- Massive active neutrino was a candidate for dark matter, but it cannot be the dominant component of dark matter !
- Cosmological upper bound on sum of active neutrino masses

 $\Sigma m_i < 0.23 \text{ eV} (95\% \text{CL})$

$$\Omega_{\nu}h^2 = \frac{\Sigma m_i}{93.14 \text{ eV}} < 0.0025$$

PLANCK 2015[arXiv:1502.01589] Cf. $\Omega_X = \frac{\rho_X}{\rho_{cr}}$ $\rho_{cr} = 10.5 h^2 \text{ GeV m}^{-3}$ $H_0 = 100 h \text{ km s}^{-1} \text{Mpc}^{-1}$ $h = 0.6774 \pm 0.0046$

D Too small to explain the Dark Matter density

 $\Omega_{dm}h^2 = 0.1188 \pm 0.0010$

Takehiko Asaka (Niigata Univ.)

Sterile Neutrino as Dark Matter?

Sterile Neutrino as Dark Matter

• Sterile neutrino N_1 with $M_1 = O(10)$ keV is a good candidate for (warm) dark matter

Stability of Sterile Neutrino

• $\tau_N > t_U$ (age of the univ.) When $M_N = 10$ keV, $\tau_N > t_U$ if $|\Theta|^2 < 3.3 \times 10^{-4}$ When $M_N \leq 1$ keV, $\tau_N > t_U$ even if $|\Theta|^2 \simeq 1$ Sterile neutrino with keV mass can be stable within the age of the universe for small mixings. However, this is not enough for

realistic dark matter (see the discussion of X-ray constraint later.) $t_U = (13.81 \pm 0.05) \text{ Gyr} \text{ [PDG '15]}$

Production of Dark Matter Sterile Neutrino -- Simplest Case --

Production of DM

- When the active-sterile mixing is small, dark matter N₁ is not thermalized in the early universe
 - Present abundance is sensitive to the initial condition \rightarrow

Usually, the abundance is taken to be zero initially, i.e., after the reheating of the inflation

- Production scenarios:
 - Dodelson-Widrow scenario
 - (Non-resonant) production via active-sterile neutrino mixing
 - Shi-Fuller scenario
 - Resonant production due to lepton asymmetry
 - Other scenarios
 - Production by interaction which is absent in the seesaw mechanism

Dodelson-Widrow Scenario

 Production by thermal scatterings induced via active-sterile neutrino mixing
 Dodelson, Widrow '94 [hep-ph/9303287]

\square Evolution of number density n_N is roughly described by

$$\frac{d}{dt}n_N + 3Hn_N = P(\nu \to N)\Gamma_{\nu} n_{\nu}$$

Γ_ν: interaction rate of ν $<math>n_ν$: number density of ν

 $P(\nu \rightarrow N) = \sin^2(2\Theta_m)\sin^2(\omega_m t)$

Mixing angle Θ_m in the early universe can be different from the vacuum mixing angle Θ !

Takehiko Asaka (Niigata Univ.)

Active-Sterile Mixing in the early universe

- Effective Hamiltonian: $H_{eff} = H_0 + V_T$ $\begin{cases}
 \text{Free part:} \quad H_0 = \frac{1}{4E} \begin{pmatrix} -\Delta m^2 \cos 2\Theta & \Delta m^2 \sin 2\Theta \\ \Delta m^2 \sin 2\Theta & \Delta m^2 \cos 2\Theta \end{pmatrix} \approx \frac{1}{4T} \begin{pmatrix} -M_N^2 & 2\Theta M_N^2 \\ 2\Theta M_N^2 & M_N^2 \end{pmatrix} \\
 \text{Thermal corr.:} \quad V_T = \begin{pmatrix} -bG_F^2 T^5 & 0 \\ 0 & 0 \end{pmatrix} \quad b = 20 \sim 80 \\
 H_{eff} = \frac{1}{4T} \begin{pmatrix} -M_N^2 - 4bG_F^2 T^6 & 2\Theta M_N^2 \\ 2\Theta M_N^2 & M_N^2 \end{pmatrix}
 \end{cases}$
- Mixing angle in the early universe

 $\tan 2\Theta_m = \frac{4\Theta M_N^2}{2M_N^2 + 4bG_F^2 T^6}$

Mixing is very suppressed for $T \gg T_*$

$$T_* = \left(\frac{1}{2b}\right)^{\frac{1}{6}} \left(\frac{M_N}{G_F}\right)^{\frac{1}{3}} \simeq 130 \operatorname{MeV}\left(\frac{M_N}{1 \operatorname{keV}}\right)^{\frac{1}{3}}$$

Takehiko Asaka (Niigata Univ.)

Abundance of DM N

• Dominant production occurs at $T = T_*$ $\dot{n_N} + 3Hn_N = \sin^2(2\Theta_m) \sin^2(\omega_m t) \Gamma_{\nu} n_{\nu}$

$$\Delta n_N = \frac{1}{2} \sin^2 2\Theta_m \Gamma_{\nu} n_{\nu} \frac{M_p}{T^2} \propto \begin{cases} T^{-6} & (T > T_*) \\ T^6 & (T < T_*) \end{cases}$$

$$\Gamma_{\nu} \sim G_F^2 T^5 \qquad n_{\nu} \sim T^3 \end{cases}$$

$$Y_N = \frac{n_N}{s} = \frac{\Delta n_N(T_*)}{s(T_*)} \sim \frac{\Theta^2 \ G_F^2 T_*^5 \ T_*^3 \ \frac{M_p}{T_*^2}}{T_*^3} = \Theta^2 G_F^2 M_p T_*^3 \simeq \Theta^2 G_F M_p M_N$$

• Present abundance $\Omega_N h^2 = \frac{\rho_N}{\rho_{cr}/h^2} = \frac{M_N n_N}{\rho_{cr}/h^2} = \frac{M_N Y_N}{\frac{\rho_{cr}}{c h^2}} = \frac{M_N Y_N}{3.6 * 10^{-9} \text{GeV}}$

$$\Omega_N h^2 \sim 0.1 \left(\frac{\sin^2 2\Theta}{10^{-7}}\right) \left(\frac{M_N}{1 \text{ keV}}\right)^2$$

For the seesaw case $\Theta = \frac{M_D}{M_N}$

 $\square \prod_{n=1}^{M} \Omega_N \text{ is determined only by } M_D$ and independent on M_M ! We have to

Solve kinetic equation for density matrix

- Including the oscillation effects in addition to the rapid interaction of active neutrinos and the production and destruction of sterile neutrinos
- Take into account hadronic uncertainties, since dominant production occurs near the quark-hadron transition

$$T_* = \left(\frac{1}{2b}\right)^{\frac{1}{6}} \left(\frac{M_N}{G_F}\right)^{\frac{1}{3}} \simeq 130 \operatorname{MeV}\left(\frac{M_N}{1 \operatorname{keV}}\right)^{\frac{1}{3}}$$

- Hadronic contributions to production rates
- QCD equation of state (how the effective degrees of freedom evolve at the transition)

TA, Laine, Shaposhnikov '07 [hep-ph/0612182]

Mixing angle required for DM abundance

Constraint on radiative decay of DM N

- N is not completely stable particle !
 - **Dominant decay:** $N_1 \rightarrow 3\nu$ for $M_1 \sim \text{keV}$
 - Lifetime can be very long

$$\tau_{N_1} = 5 \times 10^{26} \operatorname{sec} \left(\frac{\operatorname{keV}}{M_1} \right)^5 \left(\frac{10^{-8}}{\Theta^2} \right)$$

- N is not completely "dark" !
 - **D** Subdominant decay: $N_1 \rightarrow \nu + \gamma$
 - **D** Branching ratio is very small

 $Br = 27\alpha_{em}/8\pi$

Takehiko Asaka (Niigata Univ.)

Severely restricted from x-ray observations

30

Ν

Mixing angle required for DM abundance

Takehiko Asaka (Niigata Univ.)

2018/07/18

31

Warm Dark Matter

- Sterile neutrino DM is WDM
 - Free streaming length: $\lambda_{FS} \sim Mpc \left(\frac{\text{keV}}{M_1}\right) \frac{\langle q_{N_1} \rangle}{\langle q_{N_1} \rangle}$
- WDM's stream out of over-dense regions, which suppresses the growth of density fluctuations on scales smaller than λ_{FS} → may solve difficulties in

- → may solve difficulties in small scale structures of CDM
- Constraints from Ly-*α* forests
 - Lower bound on DM mass

$$M_1 > (10 - 34) \text{ keV}$$

@95% CL

Baur et al [1706.03118]

Mixing angle required for DM abundance

TA, Laine, Shaposhnikov '07

Takehiko Asaka (Niigata Univ.)

2018/07/18

33

Production of Dark Matter Sterile Neutrino -- Possible Scenarios --

Shi-Fuller Scenario [Shi, Fuller '99, astro-ph/9810076]

- Due to the lepton asymmetry at T~100 MeV, the resonant production of DM particle is possible !
 - **\square** Lepton asymmetry \mathcal{L} induces the additional potential

$$H_{0} = \frac{1}{4E} \begin{pmatrix} -\Delta m^{2} \cos 2\Theta & \Delta m^{2} \sin 2\Theta \\ \Delta m^{2} \sin 2\Theta & \Delta m^{2} \cos 2\Theta \end{pmatrix} = \frac{1}{4T} \begin{pmatrix} -M_{N}^{2} & 2\Theta M_{N}^{2} \\ 2\Theta M_{N}^{2} & M_{N}^{2} \end{pmatrix}$$
$$V_{T} = \begin{pmatrix} -bG_{F}^{2}T^{5} & 0 \\ 0 & 0 \end{pmatrix} \qquad b = 20 \sim 80$$
$$V_{L} \simeq \begin{pmatrix} 0.35 & G_{F}T^{3} \mathcal{L} & 0 \\ 0 & 0 \end{pmatrix}$$
$$H_{eff} = H_{0} + V_{T} + V_{L} = \frac{1}{4T} \begin{pmatrix} -M_{N}^{2} - 4bG_{F}^{2}T^{6} + 1.4G_{F}T^{4}\mathcal{L} & 2\Theta M_{N}^{2} \\ 2\Theta M_{N}^{2} & M_{N}^{2} \end{pmatrix}$$
$$\tan 2\Theta_{m} = \frac{4\Theta M_{N}^{2}}{2M_{N}^{2} + 4bG_{F}^{2}T^{5} - 1.4G_{F}T^{4}\mathcal{L}}$$

Production is enhanced due to the MSW effect

35

Mixing angle required for DM abundance

Lain

Constraints from Ly- α forests

- Constraints from Ly-α forests for Shi-Fuller scenario is shown by blue region
- Viable region exists!

Origin of lepton asymmetry

- Large lepton asymmetry for Shi-Fuller mechanism can be generated by heavier HNLs N₂ and N₃
 - **Baryogenesis via oscillation mechanism at** $T \gtrsim M_W$
 - **\square** Leptogenesis around DM production at $T \sim 100$ MeV

Canetti, Drewes, Shaposhnikov '13 Canetti, Drewes, Frossard, Shaposhnikov '13

Sterile Neutrino as Dark Matter

- The simplest Dodelson-Widrow scenario conflicts with cosmological constraints
- ⇒ Other production mechanism is needed
 Shi-Fuller mechanism with large lepton asymmetry
 - Addition of new d.o.f (scalar, Z', …)

Shaposhnikov, Tkachev '06, Kusenko '06, Petraki, Kusenko '06 Bezrukov, Gorbunov '10, Bezrukov, Kartavtsev, Lindner '12, Tsuyuki '14, …

incomplete list

• • • • •

Production by higher-dimensional operator

 Higher-dimensional operator provides additional production of DM sterile neutrinos

$$\mathcal{L} = \frac{1}{2\Lambda} \Phi^{\dagger} \Phi \overline{\nu_{R}^{c}} \nu_{R} + \text{h.c.}$$

$$\Phi \rightarrow A_{1}$$

TA, Eijima, Ishida, Minogawa, Yoshii '17

Takehiko Asaka (Niigata Univ.)

Implications

 DM sterile neutrino N1 must have suppressed Yukawa interaction !

$$|F_{\alpha I}| \lesssim 10^{-12}$$

What this implies???

How many RH neutrinos are needed?

- We need at least "two" sterile (RH) neutrinos to explain Δm²_{atm} ≃ 2.5 × 10⁻³ eV², Δm²_{sol} ≃ 8.0 × 10⁻⁵ eV²
 In this case, the lightest active neutrino is massless
- DM sterile neutrino:

$$m_{\rm dm} = \sum_{\alpha=e,\mu,\tau} \frac{|M_D|_{\alpha 1}^2}{M_1} \simeq 2 \cdot 10^{-5} \text{eV}\left(\frac{\text{keV}}{M_1}\right) \ll \sqrt{\Delta m_{\rm sol}^2} \simeq 9 \times 10^{-3} \text{eV}$$

- **D**M sterile neutrino is irrelevant for explaining neutrino mass scales in oscillation experiments (as well as baryogenesis and $0\nu\beta\beta$ decay)
- We need at least "three" sterile neutrinos ! • In this case, $m_{\nu_1} \leq m_{\rm dm} \simeq 2 \cdot 10^{-5} \text{eV}\left(\frac{\text{keV}}{M_1}\right)$

Active neutrino masses

exclude the degenerate masses of active neutrinos

Search for Dark Matter Sterile Neutrino

Search for sterile neutrino dark matter

- Astrophysical search for radiative decay $N_1 \rightarrow \nu + \gamma$
 - Astro-H/Hitomi + …
 - Microcalorimeter sounding rockets
 - Athena X-ray telescope

••••

- Crucial test for sterile neutrino dark matter
 - Mass + decay rate (mixing)
 →
 production scenario

Neronov, Malyshev[1509.02758]

Search for sterile neutrino dark matter

- Laboratory searches
 - **D** Tritium beta decay ${}^{3}\text{H} \rightarrow {}^{3}\text{He}^{+} + e^{-} + N_{1}$

KATRIN experiment

PTOLEMY [1307.4738]

Search for sterile neutrino dark matter

- Laboratory searches
 - **Beta capture: EX)** $^{163}_{66}\text{Dy} + N_1 \rightarrow ^{163}_{67}\text{Ho}^+ + e^-$

Summary

Takehiko Asaka (Niigata Univ.)

Summary

- Sterile neutrino is a well-motivated candidate of dark matter in light of origin of neutrino masses
 - Simple Dodelson-Widrow (non resonant production) scenario conflicts with cosmological constraints
 - Shi-Fuller (resonant production) scenario due to lepton asymmetry is possible
 - Other production scenarios have been discussed
- Searches for sterile neutrino dark matter
 - Astrophysical searches for radiative decays, …
 - **Laboratory searches for tritium beta decay/beta capture**

Both approaches are essential !