Current Status and Future Prospects of the KamLAND-Zen

T. Hachiya* for the KamLAND-Zen collaboration **RCNS, Tohoku univ.* ISoNF, Jul. 16th—19th, 2018, Quy Nhon, Vietnam

KamLAND-Zen Collaboration

Mar. 2018, Toyama, Japan

RCNS, Tohoku univ. S. Abe, A. Gando, Y. Gando, T. Hachiya, S. Hayashida, K.Hosokawa, S. leki, H. Ikeda, K. Inoue^{*}, K. Ishidoshiro, Y.Kamei, N.Kawada, T.Kinoshita, M. Koga*, T. Mitsul, H Miyake, K. Nakamura^{*}, S. Obara, A. Ohno, N. Ohta, S. Ohtsuka, H. Ozaki, T. Sato, I. Shimizu, Y. Shirahata, J. Shirai, A. Suzuki, A. Takeuchi, K. Tamae, K. Ueshima, Y. Wada, H. Watanabe

Kavli-IPMU* A. Kozlov, D. Chernyak

Osaka univ.

Y. Takemoto, S. Umehara, S. Yoshida

Tokushima unix K. Fushimi, S. Hirata

UC Berkeley & LBNL B. E. Berger^{*}, B. K. Fujikawa^{*}

. A. Winslow, J. Ouellet, S. Fraker

~50 physicists, 12 institutes.

IMIT

U. Tennessee Y. Efremenko*

H.J Karwowski, D.M Markoff, W. Tornow*

Virginia Tech T. O'Donnell

U. Washington J. A. Detwiler*, S.

Enomoto

M. P. Decowski*

U. Hawaii J. Maricic, K. Choi

Majorana neutrino and Neutrino-less double-beta decay ($0\nu\beta\beta$)

 $v=\bar{v}$?

Majorana neutrino is a key to ✓ Tiny mass of neutrinos

- See-saw mechanism*
- ✓ Matter/anti-matter asym.
 - Leptogenesis**

$0\nu\beta\beta$ decay

- Only happens if ν is Majorana
- Lepton# violation

*M. Gell-Mann, P. Ramond, R. Slansky ('79), T. Yanagida ('79), R. N. Mohapatra, G. Senjanovic ('80), **M. Fukugita, T. Yanagida ('86)

Requirement for exp.

- *O*(100–1000) kg of isotope
- BG reduction at $Q_{\beta\beta}$
- Better energy resolution

Effective Majorana mass

KamLAND-Zen

Isotope:¹³⁶Xe

- Dissolve into LS (3 w%).
- On/off measurement.
- Easy to purify.

 136 Xe $\rightarrow {}^{136}$ Ba + 2 e^- Q = 2.46 MeV

Pros of using KamLAND

- Already running, quick start.
- Large mass & Scalable
- Low BG
- Active veto with Outer-LS

Inner Balloon (IB) *production details to be explained later

KamLAND-Zen 400 (completed)

Zen400 history

Phase II spectrum and BGs

$0\nu\beta\beta$ search results

KamLAND-Zen 800 (in preparation)

Problem of Zen400

Comparison btw. Zen400 2nd phase data and ²¹⁴Bi(MC) vertex distribution

IB was contaminated.

 Fiducial vol. ratio at 2nd phase ~43%* (150 kg_{xe})

*S. Matsuda, Tohoku U., Ph. D thesis (2016). Whole volume was binned and simultaneously analyzed at final result of 2nd phase.

KamLAND-Zen 800

- Double Xe amount.
- Triple the fiducial volume of 2nd phase of Zen400

Enter into IH region Aiming $\langle m_{\beta \beta} \rangle \sim 40$ meV

Toward a Cleaner IB Production

Misc.

- Clean clean-room
- Clean tools
- More neutralizers
- Semi-auto welding

Semi-auto welding

Zen800

 Hand-welding by a professional from a company

- Semi-auto welding

 speed up
 - o stay away, less dust.

Results from Failed800

		PRELIMINARY
	²³² Th(10 ⁻¹² g/g _{film})	²³⁸ U(10 ⁻¹² g/g _{film})
Upper	49+-11	9.3+-1.9
Mid.	18+-9.4	3.1+-0.8
Lower	52+-14	7.7+-2.5

	²³² Th(10 ⁻¹² g/g _{film})	²³⁸ U(10 ⁻¹² g/g _{film})
Initial	6	2 ^{Target}
This time*	31+-7	5.3+-0.8
Zen 400 1st	79+-3	14+-1
Zen 400 2nd	336+-2	46.1+-4

*Weighted average by film mass

✓ BG reduction was confirmed!!

- $^{238}U_{Mid}$ close to initial.
- 1/3 reduction from Zen400**

**1/9 from 2nd phase

IB re-production 2017—2018

New Zen800 IB

Installation

May 2018

Finished expansion by filling Xe-less LS on May 19th

Simulation

800 vs. 400

Now purifying LS

KamLAND2-Zen (future)

KamLAND2-Zen

Improve energy resolution to reduce 2νββ BG.

• Target $\sigma = 2.5\%$ at 2.5 MeV

□>x5 light yield than now

- (x1.4) New LS
 - brighter
 - more transparent
- (x1.8) Light collecting mirror
- (x2.1) High Q.E. 20" PMT

Cover IH region

• aiming $\langle m_{\beta\beta} \rangle \sim 20 \text{ meV}$

R&Ds

New LS

Linear AlkylBenzene(LAB) base

Purification studies are ongoing.

- For optical: Activated charcoal
- For RI: Metal-scavenger

High Q.E. PMT

- Testing
 - Tolerance against high light yield
 - Overshoot and after-pulse

Light collecting mirror

- Design: "String method"
- Material: PET+AI deposition

 Simulation for optimizing arrangement is ongoing.

New electronics (MoGURA2)

- On-board logic for improving neutron tag.
- Developing prototype.

Other options

- Scintillating balloon
- Pressurize by density diff.

Summary

- KamLAND-Zen searches for Majorana neutrino with ¹³⁶Xe-loaded liquid scintillator.
- Limit on Majorana effective mass from KamLAND-Zen 400 result is the most stringent so far.
- KamLAND-Zen 800 starts this year and expected to enter into IH region.
- KamLAND2-Zen is now in R&D stage aiming to cover IH region.