

Istituto Nazionale di Fisica Nucleare

ICISE

XIII[®] RENCONTRES DU VIETNAM Gàp Gỡ Việt Nam lần thứ XIII

INTERNATIONAL CENTRE FOR INTERDISCIPLINARY SCIENCE AND EDUCATION

http://ifirse.icise.vn/nugroup/conf/nufrontier2018/index.html

Latest Phase-II results and Prospects of CNO neutrino detection with BOREXino

GRAN SASSO

SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES

Scuola Universitaria Superiore

Xuefeng Ding^{1,2} on behalf of Borexino collaboration

Gran Sasso Science Institute, L'Aquila, Italy
 INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy

International symposium on neutrino frontiers 2018 @ ICISE center, Quy Nhon, Vietnam 16–19 July 2018

photograph copyright: ICISE https://www.flickr.com/photos/icise/26854334729

BOREXINO COLLABORATION

G

SCHOOL OF ADVANCED STUDIES

Outline

- Introduction
- Full pp-chain solar neutrino
- Prospects for **CNO** solar neutrino
- Geo-neutrinos
- Conclusion

Outline

- Introduction to Borexino experiment
- Full pp-chain solar neutrino
- Prospects for CNO solar neutrino
- Geo-neutrinos
- Conclusion

Borexino experiment

- @ LNGS, 3800 m.w.e.
- Center detector:
 - Liquid scintillator + PMTs
- Important characteristics
 - σ_E 5%, σ_V 10 cm @ 1 MeV
 - IV ~300 ton, FV ~75 ton
 - LS ²³⁸U, ²³²Th ~ 10⁻¹⁹ g/g

5

Physics Program

2007 May-2010 May Phase-I

2010-2011 Purification + Calibration 2011 Dec-now Phase-II

Be7 Phys. Rev. Lett. 107, 141302 (2011) pep Phys. Rev. Lett. 108, 051302 (2012) pp Nature 512, 383-386 (28 August 2014) 3 MeV B8 Phys.Rev.D82:033006 (2010) geo-neutrino PLB 687, 299-340 (2010) Day-night symmetry PLB 707-1,22-26, (2012)

pp+Be7+pep+CNO arxiv 1707.09279 **8B** arxiv 1709.00756

neutrino magnetic moment PRD 96, 091103 (2017) gravitational wave ApJ 850-21 (2017) Be7 seasonal modulation AP, 92, 21-29 (2017) gamma ray burst AP, 86, 11-17, (2017) electric charge conservation PRL 115,231802(2017) geo-neutrino PRD 93, 031101 (2015)

Outline

- Borexino experiment
- Full pp-chain solar neutrino
- Prospects for CNO solar neutrino
- Geo-neutrinos
- Conclusion

Why Solar neutrinos?

- Solar neutrino is produced in the core region of the sun. => study the core of the sun
- Solar neutrino propagate through ultrahigh-density region and become flavor-stable => study MSW resonance

Solar vs global MSW-LMA survival prob.

Latest Phase-II results and Prospects of CNO, Xuefeng Ding

S

G

Borexino experimental results

Solar <i>v</i>	Rate (cpd/100 t)	Flux (cm ² s ¹)	Flux –SSM predictions (cm ² s ⁻¹)	
pp	$134 \pm 10^{+6}_{-10}$	$(6.1 \pm 0.5^{+0.3}_{-0.5}) \times 10^{10}$	$5.98(1, \pm 0.006) \times 10^{10}$ (HZ) $6.03(1, \pm 0.005) \times 10^{10}$ (LZ)	•
^γ Be	$48.3 \pm 1.1 \substack{+0.4 \\ -0.7}$	$(4.99 \pm 0.11^{+0.06}_{-0.08}) \times 10^9$	$4.93(1.\pm0.06) \times 10^9$ (HZ) $4.50(1.\pm0.06) \times 10^9$ (LZ)	One experiment,
pep (HZ)	$2.43 \pm 0.36 \substack{+0.15 \\ -0.22}$	$(1.27 \pm 0.19^{+0.08}_{-0.12}) \times 10^{8}$	$1.44(1.\pm0.009) \times 10^8$ (HZ) $1.46(1.\pm0.009) \times 10^8$ (LZ)	all solar pp-chain v
pep (LZ)	$2.65 \pm 0.36 \substack{+0.15 \\ -0.24}$	$(1.39 \pm 0.19^{+0.08}_{-0.13}) \times 10^8$	$1.44(1.\pm0.009) \times 10^{8}$ (HZ) $1.46(1.\pm0.009) \times 10^{8}$ (LZ)	
⁸ B _{her-i}	$0.136\substack{+0.013+0.003\\-0.013-0.003}$	$(5.77^{+0.56+0.15}_{-0.56-0.15}) \times 10^{6}$	$5.46(1.\pm0.12) \times 10^{6}$ (HZ) $4.50(1.\pm0.12) \times 10^{6}$ (LZ)	 Covering 0.2 MeV to 17 MeV
⁸ B iter ti	$0.087^{+0.080+0.005}_{-0.010-0.005}$	$(5.56^{+0.52+0.33}_{-0.64-0.33}) \times 10^{6}$	$5.46(1.\pm0.12) \times 10^{6}$ (IIZ) $4.50(1.\pm0.12) \times 10^{6}$ (LZ)	 Main challenge:
^s l} _{he}	$0.223_{-0.016-0.006}^{+0.015+0.006}$	$(5.68^{+0.39+0.03}_{-0.41-0.03}) \times 10^{6}$	$5.46(1.\pm0.12) \times 10^{6}$ (HZ) $4.50(1.\pm0.12) \times 10^{6}$ (HZ)	· clean LS
CNO	< 8.1 (95 % C.L.)	$< 7.9 \times 10^8$ (95 % C.L.)	$4.92(1, \pm 0.12) \times 10^{8}$ (IIZ)	 High precision calibration
			$3.52(1.\pm0.10) \times 10^8$ (1.Z)	 Good stability of the det.
hep	<0.002 (90% C.L.)	$<2.2 \times 10^5 (90 \% \text{ C.L.})$	$7.98(1,\pm0.30) \times 10^3$ (HZ) $8.25(1,\pm0.12) \times 10^3$ (LZ)	 Genuine MC in large E range

Internal Calibration

Source	Туре	E [MeV]	Position	Motivations	Campaign
⁵⁷ Co	γ	0.122	in IV volume	Energy scale	IV
139Ce	γ	0.165	in IV volume	olume Energy scale	
²⁰³ Hg	γ	0.279	in IV volume	Energy scale	III
⁸⁵ Sr	γ	0.514	z-axis + sphere R=3 m	Energy scale + FV	III,IV
⁵⁴ Mn	γ	0.834	along z-axis	Energy scale	Ш
⁶⁵ Zn	γ	1.115	along z-axis	Energy scale	III
⁶⁰ Co	γ	1.173, 1.332	along z-axis	Energy scale	III
⁴⁰ K	γ	1.460	along z-axis	Energy scale	III
222Rn+14C	β,γ	0-3.20	in IV volume	FV+uniformity	I-IV
	α	5.5, 6.0, 7.4	in IV volume	FV+uniformity	
²⁴¹ Am ⁹ Be	n	0-9	sphere R=4 m	Energy scale + FV	II-IV
394 nm laser	light	-	center	PMT equalization	IV

- No frequent calibration
- Contamination based monitoring: ¹⁴C, ²¹⁰Po and ¹¹C. Analytical fit as a cross-check.
- Liquid scintillator is stable.
- Good PMT_(top 1000) is stable.
- 3% / year PMT loss introduced nontrivial energy scale decrease
 - Light yield is decreasing due to degrading of worse PMTs.

MC tuning

- Tuned on calibration
- Temporal stability tracked according to ¹⁴C etc.
- center region E, dE/dr , V agreement within 1%
- periphery dE/dr 1.9%

[1] M. Agostini, Radiume (Mohte Carlo simulation of the Borexino detector," Astropart. Phys., vol. 888, p. 012193, Oct. 2017.

Analysis Overview

Low Energy Region (LER)

- MultiVariate fit
 - Energy + Radius + PS
- 0.19 ~ 2.93 MeV

How Energy Region (HER)

- Radial spectral fit
- HER-I **3.2~5.7 MeV**
- HER-II 5.7~17 MeV

LER: ¹¹C + natural decay

HER-I: n capture γ + ²⁰⁸TI **HER-II**: n capture γ

Background (LER)	rate (Bq/100 t)	Background (HER-I)	rate (cpd/227.8 t)		
¹⁴ C(0.156 MeV, β ⁻)	$[40.0 \pm 2.0]$	µ, cosmogenies, ²¹⁴ Bi (internal)	$[6.1^{+8.7}_{-3.1}10^{-3}]$		
Background (LER)	rate (cpd/100 t)	(a, n) (external)	0.224 ± 0.078		
85 Kr (0.687 MeV, β) (internal)	6.8 ± 1.8	208 Γ (5.0 MeV β^{-} α) (internal)	[0.042 + 0.008]		
²¹⁰ Bi (1.16 MeV, β ⁻) (internal)	17.5 ± 1.9				
¹¹ C (1.02-1.98 MeV, β ⁺) (internal)	26.8 + 0.2	²⁰⁸ Tl(5.0 MeV, β^{-} , γ) (emanated)	0.469 + 0.063		
²¹⁰ Po (5.3 MeV, α) (internal)	260.0 ± 3.0	²⁰⁸ Tl(5.0 MeV, β ⁻ , γ) (surface)	1.090 ± 0.046		
⁴⁰ K (1.460 MeV, γ) (external)	1.0 ± 0.6	Background (HER-II)	rate (cpd/266.0 t)		
²¹⁴ Bi (<1.764 MeV, γ) (external)	1.9 ± 0.3	μ, cosmogenics (internal)	$[3.8^{+14.6}_{-0.1}10^{-3}]$		
²⁰⁸ Tl (2.614 MeV, γ) (external)	3.3 ± 0.1	(a, n) (external)	0.239 ± 0.022		

$$M: f(E) \mapsto g(\text{charge}) = \int_0^{E_{\text{end}}} dE \cdot f(E) \cdot \text{RPF} [\text{charge}; \mu(E), \text{var}(\mu)]$$

- Analytical shape of spectrum of mono-energetic events
 - Momentum based approximation
 - Match the average (energy scale + non-linearity model)
 - Match the variance (energy resolution model)
 - ... (-> simplified)
 - More: "Mask", "pile-up" etc...
- We can simplify because
 - Borexino response is simple: small FV in center, low energies => no irregular tail
 - We are not sensitive.. => small systematics
 - Fit full MC to get the bias introduced in simplification

LER Highlight: Multi-Variate analysis

• Scaling factor introduced to remove bias.

[1] S. Davini, "Measurement of the pep and CNO solar neutrino interaction rates in Borexino-I," Eur. Phys. J. Plus, vol. 128, no. 8, p. 89, Aug. 2013.

S

G

INFN

GooStats^[1]: middle layer between GooFit (GPU minimization engine) and (Borexino) analysis module

- Parallelize the computation of likelihood
- Borexino module: Speed up more than 1000.
 Multivariate fit from days to minutes
- Low overhead: Execution time linearly scales with problem size

[1] Ding, Xuefeng. (2018, May 19). GooStats, a multivariate spectrum fitting analysis package for particle physics accelerated by graphic processing units (Version v1.2.0). Zenodo. http://doi.org/10.5281/zenodo.1217007

- Fit spectrum w/ and w/o distortion => width of best fit
- Inject deformations according to **MC tuning precision**
- Consider: Detector response (energy scale, uniformity of the energy response, pulse-shape discrimination shape), and theoretical shape

Systematic errors in the LER analysis							
	pp neutrinos		7Be neutrinos		pep neutrinos		
Source of uncertainty	-%	+%	-%	+%	-%	+%	
Fit models (see text)	-4.5	+0.5	-1.0	+0.2	-6.8	+2.8	
Fit method (analytical/MC)	-1.2	+1.2	-0.2	+0.2	-4.0	+4.0	
Choice of the energy estimator	-2.5	+2.5	-0.1	+0.1	-2.4	+2.4	
Pile-up modeling	-2.5	+0.5	0	0	0	0	
Fit range and binning	-3.0	+3.0	-0.1	+0.1	-1.0	+1.0	
Inclusion of the 85Kr constraint	-2.2	+2.2	0	+0.4	-3.2	0	
Live Time	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05	
Scintillator Density	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05	
Fiducial Volume	-1.1	+0.6	-1.1	+0.6	-1.1	+0.6	
Total systematics (%)	-7.1	+4.7	-1.5	+0.8	-9.0	+5.6	

Systematic errors in the HER analysis (8B neutrinos)						
	HER-I		HER-II		HER (tot)	
Source of uncertainty	-%	+%	-%	+%	-%	+%
Target Mass	-2.0	12.0	-2.0	12.0	-2.0	12.0
Energy scale	-0.5	+0.5	-4.9	+4.9	-1.7	+1.7
z-cut	-0.7	+0.7	0	0	-0.4	+0.4
Live time	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Scintillator density	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Total systematics (%)	-2.2	+2.2	-5.3	+5.3	-2.7	+2.7

LER

pp chain

- We measured the luminosity from neutrino to be (3.89+0.35-0.42)x10³³erg/s,
- Consistent with results from photons (3.846±0.015)x10³³ erg/s

- $R=2\Phi(^{7}Be)/[\Phi(pp)-\Phi(^{7}Be)]^{2}$
- pp-I vs pp-II B.R. **0.178+0.027**-0.023
- Consistent with both HZ (0.180±0.011) and LZ (0.161±0.010) model

- Precision on v(⁷Be) 3% is better than the model precision 7%
- With Borexino results alone we reject LZ model at 96.6% C.L., slightly better than the expected median sensitivity 93.8%.
- Including superK etc. both models are compatible

S

G

INFN

Results on Pee

 $t = -2\log[\mathcal{L}(MSW)/\mathcal{L}(vacuum)] = \chi^2 (MSW) - \chi^2 (vacuum)$

- Including uncertainty from theoretical flux prediction
- With Borexino results alone we reject Vacuum-LMA model at 98.2% C.L.,

Outline

- Borexino experiment
- Full pp-chain solar neutrino
- Prospects for CNO solar neutrino
- Geo-neutrinos
- Conclusion

What is "CNO"? Why to study it?

- C, N, O as catalyst for 4p->4He+.. fusion
- Major fusion energy source when temperature is high: more massive star or late stage of star
- Only in theory, CNO v never observed
- Also can **distinguish metallicity** (if one day we measure it to 5%)

G S

INFN

- Hardly distinguish pep, CNO and ²¹⁰Bi: only know the sum
- Constrain pep and ²¹⁰Bi to measure CNO

pp/pep ratio

G S

INFŃ

²¹⁰Po tagging — Challenging!

How weak?

1.00*CNO -1.04*Bi210 -0.15*pep = 6.60±11.34 CNO vs ²¹⁰Bi 1.00*CNO+ 1.06*Bi210 -0.65*pep = 21.01± 1.53 CNO vs pep 1.00*CNO+ 0.60*Bi210+ 2.51*pep = 23.05± 0.57 counting

- Diagonalizing the cov. matrix => get shape precision
- σ(CNO-²¹⁰Bi) ~ 11 cpd/100t
- R(CNO) ~ 5 cpd/100t

- When ²¹⁰Pb -> ²¹⁰Bi -> ²¹⁰Po reaches secular equilibrium, ²¹⁰Bi can be measured with ²¹⁰Po (α)
- With 30 ton FV ~ 6 months ²¹⁰Bi can reach 10% precision (statistical).

$$\frac{\partial X_{\rm Po}}{\partial t} = X_{\rm Bi} \cdot \lambda_{\rm Bi} - X_{\rm Po} \cdot \lambda_{\rm Po} + \nabla \cdot (D_{\rm Po} \cdot \nabla X_{\rm Po} - \vec{v} X_{\rm Po})$$

- Temperature instability induces convective current
- Convection makes local
 ²¹⁰Po concentration
 contaminated by extra
 component

Thermal insulation etc.

Before insulation

During insulation

- 20 cm Rockwool dressed to maximize the temperature gradient and stabilize the detector's stratification in order to reduce convective transport of ²¹⁰Po from the periphery to the FV
- Detector wide and experiment hall wide Heating system

Water Tank Re-entrant Sensors

Hemishell Analysis

Latest Phase-II results and Prospects of CNO, Xuefeng Ding

32

Extract ²¹⁰Bi

- Define **clean** region, then do temporal fit to extract ²¹⁰Bi
- Residual convection component: systematics. Study is still ongoing to evaluate its magnitude. Radial fit can provide cross-check.

Assuming pep and ²¹⁰Bi constraint of certain precision

v(CNO) median p-value (LZ/HZ hypothesis)

Outline

- Borexino experiment
- Full pp-chain solar neutrino
- Prospects for CNO solar neutrino
- Geo-neutrinos
- Conclusion

Geo-neutrinos

- 2056 days data (907 ton x year), 77 candidate
- $S_{geo}=23.7^{+6.5}-5.7$ (stat)^{+0.9}-0.6(sys) TNU (**5.9** σ , m(Th)/m(U)=3.9)
- geochemical and geodynamical BSE fully compatible, cosmochemical rejected at 1 σ level
- Geo-neutrinos from mantle observed at 98% C.L.

S

G

- Borexino reported simultaneous measurement of **full** ppchain solar neutrinos.
- Significant improvement achieved in stabilizing detector stratification and reducing convection current.
- With 10% ²¹⁰Bi measurement, the median sensitivity of CNO neutrinos is ~3.7 σ (HZ) or ~2.8 σ (LZ)
- With 2056 days of data, we observed geo-neutrino at 5.9σ C.L. and observed mantle geo-neutrino at 98% C.L.

Backup

TFC cosmogenic veto

 Production of ¹¹C/¹⁰C is associated with production of neutron

TFC cosmogenic veto

- μ track + spoliation neutron + cosmogenic
- LER: (remove 92±4% ¹¹C, energy fit)
 - **6He** (no neutron associated) also suppressed
- HER: (remove 92.5+7-20% ¹⁰C, temporal fit)
 - ¹¹Be (no neutron associated) also suppressed