Results from MINOS and MINOS+

Karol Lang University of Texas at Austin

Selected Topics: + Beams and detectors + Standard oscillations + Sterile neutrinos + Large extra dimensions On behalf of the MINOS+ Collaboration

MINOS & MINOS+

BEAMS AND DETECTORS

MINOS, MINOS+, and NuMI

NuMI Neutrino Beams (Neutrinos from the Main Injector)

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 4

MINOS: Near and Far Detectors

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium ቭ Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 5

MINOS and MINOS+ exposures $2005 \rightarrow 2016$

MINOS & MINOS+

STANDARD OSCILLATIONS

Event types in MINOS

- Fit in bins of $\cos(\theta_{zen})$ and energy
- Separate neutrino and antineutrino (mass hierarchy discrimination)
- Complements beam neutrino samples

MINOS+ Charged current (v_{μ} -CC) vs Neutral current (NC) classification

Event classification: k Nearest-Neighbors (kNN)

- Fit hadron production from HORNS OFF (i.e., no focusing B-field)
- Fit for focusing effects in HORNS ON (i.e., with focusing B field)

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 12

Combined fit MINOS & MINOS+ (beam + atmospheric)

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 13

χ^2 contours and projections

MINOS & MINOS+

SEARCH FOR STERILE NEUTRINOS

- (New) Oscillation parameters:
 - \Rightarrow 3 mass scales:
 - \Rightarrow 6 mixing angles:
 - \Rightarrow 3 CP-violating phases: $\delta_{13}, \delta_{14}, \delta_{24}$

Search for

- \Rightarrow v_u-charged current disappearance \rightarrow sensitive to Δm^2_{41} and θ_{24}

- Δm_{21}^2 , Δm_{32}^2 , Δm_{41}^2 $\theta_{12}, \theta_{23}, \theta_{13}, \theta_{14}, \theta_{24}, \theta_{34}$
- \Rightarrow neutral current disappearance \rightarrow sensitive to Δm_{41}^2 and θ_{24} , θ_{34}

"3+1" oscillations

Small $\Delta m^2_{41} \sim 0.5 \text{ eV}^2$

- Almost no oscillations at the ND
- Oscillations at high E at the FD

Large $\Delta m_{41}^2 \sim 5 \text{ eV}^2$

- Oscillations at the ND
- Finite energy resolution averages out rapid oscillations at the FD

Previous results: used Far-over-Near energy spectra ratios

Two-detector fit strategy

ND and FD fits simultaneously

- Flux derived using MINERvA PPFX method (uses hadron production data)
- Systematic uncertainties encoded in the covariance matrices
 - ⇒ 26 sources of systematic uncertainties
 - ⇒ Accounts for correlations

• Use
$$v_{\mu}$$
-CC and NC spectra in a joint χ^2 fit

$$\chi^2 = \sum_{i,j=1}^{N} (\mathsf{obs}_i - \mathsf{pred}_i) [V^{-1}]_{ij} (\mathsf{obs}_j - \mathsf{pred}_j)$$

- Covariance matrix fits do not include systematics as nuisance parameters
- The error bands and prediction account for off-diagonal

- Covariance matrix fits do not include systematics as nuisance parameters
- The error bands and prediction account for off-diagonal

- Use full NC and CC samples in two detectors
- Fit for θ_{23} , θ_{24} , θ_{34} , Δm^2_{32} , and Δm^2_{41}
- Fix δ_{13} , δ_{14} , δ_{24} , and θ_{14} to zero
- Median sensitivity from Feldman-Cousins corrected 90% CL contours from pseudo-experiments
- Best fit:
 - $\Delta m_{41}^2 = 2.33 \times 10^{-3} \text{ eV}^2$
 - $\sin^2 \theta_{24} = 1.1 \times 10^{-4}$
 - $\theta_{34} < 8.4 \times 10^{-3}$
 - $-\sin^2 2\theta_{23} = 0.92$
 - $\chi^2_{\rm min}/{\rm dof} = 99.3/140$
 - $-\chi^2(4\nu) \chi^2(3\nu) = 0.01$

- MINOS and MINOS+ 90% C.L. exclusion limit over 7 orders of magnitude in Δm_{41}^2
- Improvement at large Δm_{41}^2 over previous MINOS result due to:
 - Near Detector statistical power
 - Sensitivity to normalization shifts
 - Improved binning around atmospheric dip in Far Detector
- Increased tension with global best fit
 - Displayed here with $|U_{e4}|^2 = 0.023$
- Posted to arXiv:1710.06488 and submitted to PRL
 - See arXiv paper and ancillary materials for more details
- Final year of data is still to be analyzed

[^]S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J.Phys.G43, 033001 (2016)

MINOS & MINOS+

LARGE EXTRA DIMENSIONS (LED)

- compactified on a circle with radius R
- 3 sterile fields that live in the bulk
- Sterile fields act as Kaluza-Klein towers of infinite sterile neutrinos

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = \left| \sum_{j=1}^{3} \sum_{n=0}^{+\infty} U_{\mu j} U_{\mu j}^{*} \left(W_{j}^{(0n)} \right)^{2} \exp \left[i \left(\frac{\lambda_{j}^{(n)}}{R} \right)^{2} \left(\frac{L}{2E} \right) \right] \right|^{2}$$

Mixing in Neutrino towers masses

Previous results: Far-over-Near method

MINOS+ and MINOS data

Two-detector method

MINOS & MINOS+ THE END GAME

- 11 years of operations, 25 POT exposure, up to 600 kW beam
- Best to date Δm_{32}^2 (68% CL), no octant preference at 90%CL for θ_{23}

Normal
$$\Delta m_{32}^2 = +2.42_{-0.09}^{+0.08} (\times 10^{-3} eV^2)$$

 $\sin^2 \theta_{23}^2 = 0.42 (0.37 \leftrightarrow 0.65 [90\% C.L.])$ is $\Delta m_{32}^2 = -2.48_{-0.07}^{+0.10} (\times 10^{-3} eV^2)$
 $\sin^2 \theta_{23}^2 = 0.42 (0.36 \leftrightarrow 0.65 [90\% C.L.])$

- Some of the most stringent bounds on "3+1" sterile neutrinos
 - ⇒ Muon neutrino disappearance
 - ⇒ Joint analysis with Daya Bay for v_µ → v_e appearance bounds
 - ⇒ Increased tension with global fits

Bounds on LED and NSI (soon)

Then and now

Last MINOS+ FD event: 29 Jun 2016

Argonne · Athens · Brookhaven · Caltech · Cambridge · Campinas · Cincinnati · Fermilab · Goiás · Harvard · Holy Cross · Houston · IIT · Indiana · Iowa State · Lancaster · Manchester · Minnesota-Twin Cities · Minnesota-Duluth · Otterbein · Oxford · Pittsburgh · Rutherford · São Paulo · South Carolina · Stanford · Sussex · Texas A&M · Texas-Austin · Tufts · UCL · Warsaw · William & Mary

MINOS EXTRA IMAGES

- We consider 44 total sources of systematic uncertainty in five categories
- Largest contributions arise from energy calibration uncertainty for NC events and cross-section uncertainties for CC events
- Statistical and systematic uncertainties are incorporated via covariance matrix
- Covariance matrix crossterms allow for cancellation of uncertainties

Sources of Systematic Uncertainty

Uncertainty source	Maximum uncertainty (%)			
	ND CC	FD CC	ND NC	FD NC
Hadron production	7%	7%	7%	7%
Cross-sections	10%	10%	11%	13%
Backgrounds	1%	1%	10%	5%
Energy scale	10%	8%	20%	18%
Other	6%	3%	6%	3%
Total	15%	12%	25%	20%

$$\chi^2 = \sum_{i,j=1}^{N} (\mathsf{obs}_i - \mathsf{pred}_i) [V^{-1}]_{ij} (\mathsf{obs}_j - \mathsf{pred}_j)$$

$$P\left(\nu_{\mu} \to \nu_{\mu}\right) \approx 1 - \sin^{2} 2\theta_{23} \cos 2\theta_{24} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right) - \sin^{2} 2\theta_{24} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right).$$
(1)

$$P_{\rm NC} = 1 - P\left(\nu_{\mu} \to \nu_{s}\right)$$

$$\approx 1 - \cos^{4}\theta_{14}\cos^{2}\theta_{34}\sin^{2}2\theta_{24}\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$

$$-\sin^{2}\theta_{34}\sin^{2}2\theta_{23}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \qquad (2)$$

$$+\frac{1}{2}\sin\delta_{24}\sin\theta_{24}\sin2\theta_{34}\sin2\theta_{23}\sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right)$$

Uncertainty	Sensitivity $\Delta m_{41}^2 = 1 \mathrm{eV}^2$	to $\sin^2 \theta_{24}$ at: $\Delta m_{41}^2 = 1000 \mathrm{eV}^2$
Statistics only	0.0008	0.0002
+Energy scale	0.0054	0.0003
+Hadron production	0.0131	0.0063
+Cross section	0.0138	0.0103
+Background	0.0141	0.0112
+Beam	0.0143	0.0128
+Other	0.0153	0.0165

Table I. The reduction in $\sin^2 \theta_{24}$ exclusion sensitivity caused by accumulation of systematic sources at two values of Δm_{41}^2 . The systematic uncertainty sources are given in Eq. (4).

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 34

4-flavor oscillations in MINOS

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 35

Ratios of energy spectra

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 36

LED analysis details

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 38

LED analysis details

Two-detector method

Phys.Rev. D94 (2016) no.11, 111101

- The 2017 MINOS sterile analys1s uses Far and Near Detectors energy spectra directly rather than their ratios
- Systematics through the covariance matrix

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 41

- Preliminary: ongoing effort between MINOS+/MINOS and Daya Bay and Bugey-3 data.
- Significant increase in the constraint at Δm²₄₁ > 10 eV² due to two-detector fit method.
- A new combination with a larger Daya Bay data later.

^J. Kopp, P. Machado, M. Maltoni, T. Schwetz, JHEP 1305:050 (2013)
*S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J.Phys. G43 033001 (2016)

Combined fit MINOS & MINOS+ (beam + atmospheric)

Best fits, 90% C.L.

Best fit:
$$\Delta m_{32}^2 = + 2.42 \quad (\times 10^{-3} eV^2)$$

 $\sin^2 \theta_{23}^2 = 0.42$

Normal $\Delta m_{32}^2 = + (2.28 \iff 2.55) (\times 10^{-3} eV^2)$ $\sin^2 \theta_{23}^2 = (0.37 \iff 0.65)$

Inverted $\Delta m_{32}^2 = -(2.33 \iff 2.60) (\times 10^{-3} eV^2)$ $\sin^2 \theta_{23}^2 = (0.36 \iff 0.65)$

K. Lang, U. of Texas at Austin, Results from MINOS and MINOS+, Int. Symposium on Neutrino Frontiers, ICISE, Quy Nhon, July 16, 2018 44

Systematics

P. Adamson et al. Phys. Rev. Lett. 112, 191801

END-OF EXTRA IMAGES