

Nicolas Renault-Tinacci On behalf of GRAND collaboration

GRANDproto300 (GP300)

May 25th 2018 11th FCPPL workshop Marseille

TREND@Ulastai, 21CMA antennas

GRAND project timeline GRAND

	20 En	18 20 d of TREND	20	2025 GRAND10k start	203x GRAND200k completed
	TREND	GRANDproto35			
	Demonstration of EAS autonomous detection [see S. le Coz's talk]	To improve backgro rejection & EAS de efficiency	ound 1 etection 1	Ist GRAND hotspot with 10'000 antennas on 10'000kn _ Beginning of neutrino sear _ Detector optimization in view of GRAND200k [see O. Martineau's talk]	200kAntennas on 200'000km ² GRAND full research potentia ch

GRAND project timeline

Two major experimental issues to solve for (full) GRAND:

• Autonomous radio-detection with self-standing/unwired units

-Major challenge for trigger & data collection

- Neutrino induced showers associated with very inclined trajectories (theta>85°)
 - Additional challenge for background rejection & shower reconstruction.

GRAND project timeline

Site of GP300

- Best candidate site: Balikun, XinJiang
 - Large area with easy access and gentle slopes
 - Very good electromagnetic background condition
- Further tests starting in August 2018
- Request official approval → final decision before end 2018

Antenna & Electronics

- Antenna design optimised for very inclined radio waves (D. Charrier, Subatech)
 → test summer 2018
- Electronics (C. Timmermans, Nijmegen) → first prototype for September 2018
 - 500MHz+12bits digitizer
 - imbedded FPGA-CPU for clever trigger @ antenna level
 - Wireless data transfer
- Frequency band → 50-200 MHz (A. Balagopal, KIT)

Layout of GP300

Antennas positioned on moderate slopes

3-density layout:

east [m]

 \rightarrow Large acceptance at large zenith values

→ Large energy span

Westing (m)

Simulations for GP300

EW (km)

- Real antenna positions accounting for Balikun topography
- 6 energy bands from 10¹⁷ to 10^{19.5} eV
- At the moment, 100 simulated showers for each energy
- zenith, azimuth and core positions randomly generated

Simulations for GP300

- Lack of statistics (for now) in the simulations
 → No point at low theta
- Capability to detect very inclined (θ>80 deg) CR showers with GP300

Simulations for GP300

Large exposure providing large statistics

Physics with GP300

- If GP300 is completed by particle detector array:
 - Built-in discrimination between muon & electromagnetic components (sole experiment with direct independent measurements)
 - Large statistics over $10^{16.5} 10^{18} \text{ eV}$
 - Great tool to study Gal-Extragal CR origin transition

Summary

- Gap between GRANDproto35 and GRAND10k
- Two issues to tackle for GRAND (full scale):
 - Autonomous trigger & data collection with unwired units
 - Background rejection + reconstruction for Earth-skimming showers

→GRANDproto300 as an engineering array

- Antenna and electronic systems design under progress
- Best candidate site found = Balikun, XinJiang
 - Further tests to perform, official approval request
- Proposed layout for GP300 @Balikun with 3 antenna densities
- Simulations performed, good CR exposure and statistics, capability to see very inclined showers
 - →GP300 also an array to do physics