Report on BEAMS-LC-CEPC:

1. First luminosity monitoring at SuperKEKB

(2. Beam halo characterization at ATF/ATF2 → backup slides)

Philip Bambade LAL-Orsay

On behalf of LAL SuperKEKB and ATF2 groups:

*Chinese Scholarship Council

Philip Bambade, Salvatore di Carlo (postdoc), Angeles Faus-Golfe, Didier Jehanno (engineer), Viacheslav Kubytskyi, Yann Peinaud (engineer), Cécile Rimbault, Sandry Wallon (engineer), Chengguo Pang^{*} (2nd year PhD student), Renjun Yang^{*} (3rd year PhD Student)

Collaboration with Chinese Institutes:

IHEP: Sha Bai, Jie Gao, Dou Wang, Yiwei Wang Nanjing Univ.: Edna Cheung, Taifan Zheng (1st year PhD Student)

11th FCPPL workshop Marseille - France 22-25 May 2018

Exploring the luminosity frontier with SuperKEKB

SuperKEKB 8 × 10³⁵/cm²/s

All future e+e− circular colliders use novel "nanobeam" collision
 scheme → being tried right now for 1st time at SuperKEKB in 2018
 → essential validation + training for future CEPC / FCC-ee

SuperKEKB / Belle-II & "Machine-Detector Interface"

- Control beam induced backgrounds
- Luminosity monitoring & tuning
 - 1) Phase 1 : 2016/Feb. → Jun.
 - single beam commissioning, vacuum scrubbing
 no luminosity (no final focus), no detector
 - 2) Phase 2 : 2018/Feb. → 2018/Jul.
 colliding beam commissioning, no vertex detector
 - 3) Phase 3 : ~ February 2019...
 - towards full luminosity for physics running

	parameters		KEKB		SuperKEKB		unito
			LER	HER	LER	HER	units
	Beam energy	Eb	3.5	8	4	7.007	GeV
	Half crossing angle	φ	11		41.5		mrad
	# of Bunches	Ν	1584		2500		
	Horizontal emittance	εx	18	24	3.2	4.6	nm
	Emittance ratio	κ	0.88	0.66	0.27	0.25	%
	Beta functions at IP	βx*/βy*	1200/5.9		32/0.27	25/0.30	mm
→	Beam currents	lь	1.64	1.19	3.6	2.6	А
→	beam-beam param.	ξγ	0.129	0.090	0.088	0.081	
	Bunch Length	σz	6.0	6.0	6.0	5.0	mm
	Horizontal Beam Size	σ×*	150	150	10	11	um
→	Vertical Beam Size	σ y*	0.94		0.048	0.062	um
	Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Nano-Beam Scheme SuperKEKB (design)

ightarrow mitigates beam-beam and hour-glass effects

→ Luminosity × 40

Luminosity

Fast & slow variations at IP require feedback corrections

• Beam-beam deflection for fast vertical motion

• Luminosity feedback by "dithering" for slower horizontal motion

Radiative Bhabha at vanishing scattering angle

 $\sigma \sim 250 \text{ mbarn} (E_{\gamma} > 1\% E_{beam})$

Correction for cross section due to finite beam size

Y. Funakoshi (KEK), background workshop, Feb. 2012

Luminosity monitoring specs

- Relative measurements
- 10⁻² in 1 ms over all bunches ("dithering")
- 10⁻² in ~ 1 s for each 2500 bunch → 4ns (for nominal luminosity)
- Non luminosity scaling contamination < 1% (e.g. beam gas bremstrahlung and Touschek losses)
- Should also work for initial luminosity

Two complementary techniques

LumiBelle2

ZDLM (Zero Degree Luminosity Monitor)

Both measure photons, recoiling electrons or positrons from the radiative Bhabha process at vanishing scattering angle \rightarrow very large cross section.

- Diamond sensors;
- Digital electronics;
- 4 \times 4 \times 0.5/0.14 mm^3 single crystal CVD diamond sensors;
- Fast charge/current amplifiers.

- Cherenkov and scintillator counters;
- Analog electronics;
- $15 \times 15 \times 64 \text{ }mm^3$ LGSO non-organic scintillator and ES-crystal (quartz);

- •Signal: Bhabha positrons
- Background: Bremsstrahlung and Touschek positrons
- •Platform: 11 m after IP
- •3 sensors aligned
- •Window + radiator

HER side

- •Signal: Bhabha photons
- Background: Bremsstrahlung photons, Touschek electrons
- •Platform: 30.5-30.8 m after IP
- •3 sensors: up, down, side

No trigger + Synchronization ----> Continuous monitoring, averaging at 1 kHz TIL and RAWSUM are different ways of calculating the luminosity from the measured signal

DAQ and online signal processing

Signal beam background

Coulomb

- Proportional to vacuum pressure and beam current
- Important globally but negligible for luminosity monitoring

Bremsstrahlung → dominant

- Proportional to vacuum pressure and beam current
- Largest source of background in phase 2
- Photons measured at HER side
- Positrons measured at LER side

Touschek:

- Proportional to square of beam current
- Inversely proportional to beam size

Luminosity signal

Radiative Bhabha process:

- Scattered @ IP
- Proportional to luminosity
- Large cross-section

Background study (1)

Background study (2)

First collision – April 26, 2018

Dithering feedback algorithm

Dithering study with LumiBelle2 (1)

• Measurement with Lock-in amplifier

- Phase obtained by mixing dithering driven signal and luminosity monitoring signal
- Slope information can be obtained by several successive corrective moves
- •Newton method is used to correct the beam orbit at 1 Hz

Dithering study with LumiBelle2 (2)

• Feedback shown to correct a deliberately introduced horizontal offset (after parameter tuning...)

Bunch-by-bunch averaged LumiBelle2 measurements during vertical collision scanning

- Fitting of vertical beam sizes and relative offsets bunch-by-bunch
- Presently16 ns bunch separation, in Phase $3 \rightarrow 4$ ns (LHC has 25 ns)

Signals and backgrounds need normalization by bunch-by-bunch currents

Individual bunch vertical sizes and relative offsets are determined to a few percent

σ_y (offset scans) squeezing

- σ_v is estimated for each monitor and average is given;
- Estimation from luminosity only during vertical offset scans;

Conclusions & future prospects

- SuperKEKB: 1st trial in 2018 of new "nanobeam" collision scheme promises a breakthrough in luminosity (× 40 increase)
- Latest instantaneous luminosity with 2.1.1 optics $\sim 10^{33}$ cm⁻² s⁻¹
- Challenge for beams controls and tuning, including backgrounds
- Successful test of LumiBelle2 fast luminosity monitor during 2018 colliding beam commissioning at KEK:
 - several channels for 1kHz % level luminosity precision over 3 orders of magnitude
 - successful test of horizontal feedback based on LumiBelle2 by dithering technique
 - bunch-by-bunch luminosities and vertical beam sizes / relative offsets
- Impact on future circular e+e- collider design work
- Rare, almost once in a life time, hands-on experience starting up a major HEP accelerator project, especially for junior scientists
- → IN2P3 (LAL & IPHC) has joined Belle II
 - LumiBelle2 activity moving to Belle II as long-term technical service task
 - prepare LumiBelle2 for sustainable long-term operation with more limited HR
- New perspectives for France-China collaboration

Backup slides (ATF beam halo studies)

Accelerator Test Facility

Energy: 1.3 GeV, Repetition: 3.12 Hz Intensity: 1x10¹⁰ e-/bunch (max. 2x10¹⁰), 1~20

bunches/pulse Emittance: Design, 1 nm(H)/ 10 pm(V), Achieved 4 pm(V)

Advanced Beam Instruments R&D

ATF2 beamline

Nano-meter beam R&D

Final focus system development Technologies to maintain the luminosity at ILC

Goal 1: validate ILC-like final focus $\rightarrow \sigma_y \sim$ 40 nm Goal 2: nm-level IP beam stability via feedback Damping Ring (~140m)

Low emittance beam

.....

Cs₂Te Photocathode RF Gun

1.3 GeV S-band Electron LINAC (~70m)

BB

Motivation of halo study at ATF

- Background induced by halo particles loss upstream of IP might reduce the modulation resolution of *Shintake* monitor
- Essential to understand the genesis of halo and its distribution !

Instrumentations for beam halo diagnostics

- First measurement: wire scanners at the previous EXT line, 2005
- New diagnostics: diamond sensor (DS) detector and YAG/OTR monitor

in vacuum diamond sensor detector

- Two 1.5 mm×4 mm and two 0.1 mm×4 mm sCVD DS strips
- Dynamic range $d_R \approx 10^5$ * Lower limit: induction current/noise level

 $> 2 \times 10^{-3} \text{ nC} (>1 \times 10^3 e)$

* Upper limit: charge collection saturation

 $\sim 1 imes 10^2 \ {
m nC}$

 Signal of core is re-scaled by "self-calibration" thanks to WS upstream of DS

* Approximating charge collected in the core by extrapolating WS measurement

* Re-scaling factor

 $\kappa(n_e) = Q_{exp}/Q_{meas}$

A novel Ce:YAG/OTR monitor

- YAG —> core/halo; OTR —> core (saturation-free)
- Collaboration among KEK, CERN and LAL
- Dispersion-free or large dispersion
 —> Adjusted using QS1X/QS2X in the EXT
- Critical Performance:

DNR > 10^5 and resolution < 10 μm

- Scanning (x or y) using YAG + ND filter
 avoiding the blooming effect
- Multi-shot measurements

-> Position/beam size jitter < 5%

Vertical beam halo due to BGS

- Beam profiles measured by DS after re-scaling and that by YAG monitor are in good agreement with the numerical predictions
- Higher tail for the worsened vacuum: 2×10^{-7} Pa $\rightarrow 1 \times 10^{-6}$ Pa
- Vertical beam halo is dominated by elastic BGS!

Horizontal profile measurements

- Measurements are higher than the numerical predictions (BGS)
- Asymmetric distribution, more particles on the high energy side
- No significant change for the degraded vacuum
- Other dominating mechanisms (Touschek scattering?)

Design of energy spectrum measurement (1)

Min. distinguishable energy deviation

$$\delta_{m, \text{sep}} \geq 2\sqrt{\epsilon\beta}/\eta$$

- Small β and large η, but ε_x ≈ 100ε_y → vertical observation is superior!
- Vertica dispersion blowing up:
 - Adjusting η_y by tuning QS1X/QS2X with specific ratio, e.g., 10:7
 - Ver. profile <— energy spectrum if η_y is large enough (>150 mm)

First observation of energy spectrum

- Simulations with the measured vertical betatron profile at EXT kicker
- For η_y = 200 mm, the measured vertical tail is higher than the prediction by at least a factor of 4 -> Momentum profile !?

 Influence of the betatron halo (BGS) and xy coupling terms? Due to Touschek scattering?