

Recent results on jets in ALICE

Yaxian MAO

Central China Normal University

11th France China Particle Physics Laboratory Workshop (FCPPL2018) Marseille, France 22-25 May, 2018

Yaxian MAO Central China Normal University

Probing hot QCD matter with hard probes

- Hard probes serve as calibrated probe (pQCD)
- Hard probes traverse through the medium and interact strongly with the hot QCD matter
- Suppression pattern provides density measurements
- <u>General picture</u>: parton energy loss through medium-induced gluon radiation and collisions with medium constituents
- Quantify the medium effects with nuclear modification factor

/

2 (

Nuclear effects probed by hard process (jets)

- Disentangle initial and final state effects
- Characterize nuclear PDFs
- Significant increase in integrated luminosity allows more precise investigation of statistic hungry probes

systems	years	√s _{NN} (TeV)	L _{int}
Pb-Pb	2010-201111	2.76	~75 µb ⁻¹
	2015	5.02	~250 µb ⁻¹
	by end of 2018	5.02	~1 nb ⁻¹
Xe-Xe	2017	5.44	~0.3 µb ⁻¹
p-Pb	2013, 2016	5.02	~18 nb ⁻¹
	2016	8.16	~25 nb ⁻¹
p-p	2009-2013	0.9, 2.76,	~200 µb ^{-1,} ~100 nb ⁻¹
		7, 8	~1.5 pb ^{-1,} ~2.5 pb ⁻¹
	2015, 2017	5.02	~1.3 pb ⁻¹
	2015-2017	13	~25 pb ⁻¹

Jet measurements in ALICE

Yaxian MAO

ALICE

Underlying Event (UE) in jet reconstruction

- Background gets clustered into jets, need to decide which particles are part of jets and which belong to UE
- Good control of UE allows to access deep information of the hadronic structure and hard probes
- Two strategies:
 - cluster jets and subtract observable-by-observable
 - subtract UE on entire event, then cluster jets

Underlying event study

- Similarity of UE behavior at different collision energies
 - Fast rise for $p_T < 5$ GeV/c, mostly attributed to the increase of MPI rate, followed by a plateau-like region
 - Higher collision energy generates larger charged particle density
 - UE level can be retroduced by PYTHIA8 generator

Charged jet cross section in pp collisions

- Charged jets are reconstructed using different resolution parameters and down to low p_{T}
- Jet cross section is well described by POWHEG+PYTHIA8 predictions (NLO pQCD+parton shower+hadronization) within systematic uncertainties

Jet cross section ratio

- Jet cross section ratio measurements are the reflection of jet collimation
- Different jet cross section ratio is consistent with Monte Carlo simulation
- Jet cross section ratio is consistent with different \sqrt{s} , slightly increasing with jet p_T

Inclusive charged jet spectra in Pb-Pb collisions

- Charged jet spectra in different centrality intervals are measured in Pb-Pb collisions with different cone radii
- Centrality ordered jet production yield are observed after T_{AA} scaling

Jet cross section ratio in Pb-Pb collisions

- Ratio of charged jet cross section between R = 0.2 and R = 0.3 for different centrality intervals
- No significant difference with jets in vacuum (POWHEG+PYTHIA reference)
- Small difference at low p_T for most central collisions \rightarrow hints for stronger broadening at low p_T ?
- JEWEL predictions agree with data

Jet nuclear modification factor RAA

- Strong suppression of jet yield in most central collisions
- Less suppression for peripheral events
- RAA of different radius jets are consistent with systematic errors
- POWHEG+PYTHIA8 is used as pp reference to enlarge to higher jet p_T range

Jet RAA comparison

Full jets and charged jets are suppressed similarly

- R_{AA} at 5.02 TeV similar to 2.76 TeV
 - "compensation" between increasing suppression and change of the shape of the spectra

Yaxian MAO Central China Normal University 12

Heavy-Quark (c-)jet tagging

• Charged jet containing a D meson as one of the constituents

Central China Normal University

ALICE

Invariant mass analysis to extract D-jet raw spectrum

- Background spectrum from side bands
- Corrected jet p_T spectra unfolded for detector effects and background fluctuations
- D⁰-tagged jets are measured down to 5 GeV/c
 - D⁰ mesons must come from hard scattering
 - Jets from charm quarks are measured selectively

Jet RAA: inclusive vs. tagged D⁰-jet

$$R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{d^2 N_{AA} / dp_T d\eta}{d^2 \sigma_{pp} / dp_T d\eta}$$

- Strong suppression of D⁰-tagged jets in most central collisions
 - Hints of more suppression at low
 pT D⁰-tagged jets than inclusive
 jets at higher pT
 - \rightarrow Similar to D meson R_{AA}
 - Importance of collisional energy loss for heavy flavor jets
- Promising results in view of this year
 Pb-Pb run and run 3,4
 - Improved precision and extended jet p_T reach
 - jet shape and momentum fraction measurements

Jet anatomy

• Jet are extended objects with momentum and angular structure

Central China Normal University

ALICE

Modification of jet fragmentation patterns

- Excess at low p_T and large angular distance \rightarrow jet broadening
- Suppression in intermediate p_T and radii \rightarrow jet quenching
 - Investigate low p_T jet fragmentation patterns with ALICE

ALICE

Jet fragmentation function (FF) measurements

- Focus on low p_T jet fragmentation properties (later with identified particle FF)
- Analysis in Pb-Pb collision is ongoing to study jet modifications

ALICE Central China Normal University

y+jet: "golden" probe for energy loss

- •Photon tagging:
 - Sets the reference of the hard process
 - Provide the calibrated energy of the jet opposite
 - Identify quark jets by photon tagging
 - Decay photons from π^0 dominate the background

π⁰-hadron azimuthal correlations

- Double peaks observed \rightarrow di-jet structure
- Near side peak width broader in PbPb compared to $pp \rightarrow jet$ broadening
- Away side peak in central PbPb collision is strongly suppressed \rightarrow jet quenching

π⁰-hadron correlation distributions

- Enhancement at very low p_T , indicating extra particles excess \rightarrow consistent with low p_T broadening (soften of fragmentation functions? excited by medium?)
- Suppression on the away side for high $p_T \rightarrow$ consistent with jet quenching

Isolated π^0 -hadron x_E distributions

- x_E slope moves towards to $\langle z \rangle = 1$ direction \rightarrow isolated π^0 samples a large fraction of jet energy
 - Very limited statistics and large uncertainties from Run1 analysis

Isolated y-hadron x_E distributions

- Isolated γ -hadron x_E distributions in favour of quark jet FF
- Unable to perform such tagging study due to limited statistics in Run I

ALICE

Kinematics enlarged by using Run2 triggers

- With Run2 triggers, isolated γ can reach to very high pT
- Different detector triggers performed the same way
 - Promising results in view of Run2 data analysis are coming soon

Summary and outlook

- A consistent picture about jet quenching in PbPb collisions at LHC
 - high p⊤ jets/particles strongly suppressed
 - charm quark jets suppressed similarly as inclusive jets
- Jet properties can be studied using triggered particle correlations
 - isolated trigger particle correlations can be used as a proxy to study light quark jet fragmentation pattern
 - low p_T particle enhanced and away side high p_T suppressed, consistent picture for jet quenching
- Improving understanding on jet thermalization and resolving power of jets using jet tagging and anatomy
 - A joint proposal on HF-tagged jet was submitted to FCPPL2018 proposal

Thank you for your attention!

backup

響

Jet reconstruction

Anti-k_T:

Sequential clustering of objects in event (calo towers, tracks etc) with a particular distance measure:

$$egin{aligned} d_{ij} &= \min(k_{ti}^{2p},k_{tj}^{2p})rac{\Delta_{ij}^2}{R^2},\ d_{iB} &= k_{ti}^{2p}\,, \ \
ho$$
=-1

Results in cone-shaped, approximately R-sized jets

ALICE Yaxian MAO Central China Normal University

2008: Fastjet revolution

Cacciari, Salam, Soyez, JHEP 0804 (2008) 063 "anti-kT" replaced zoo of prior algorithms:

- conceptually simple
- theoretically sound
 - infrared safe
 - collinear safe
- computationally efficient & robust
- part of Fastjet package

Which jets are found depends on anti-k_T resolution parameter

