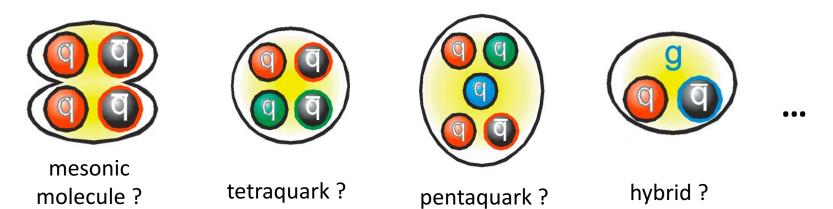


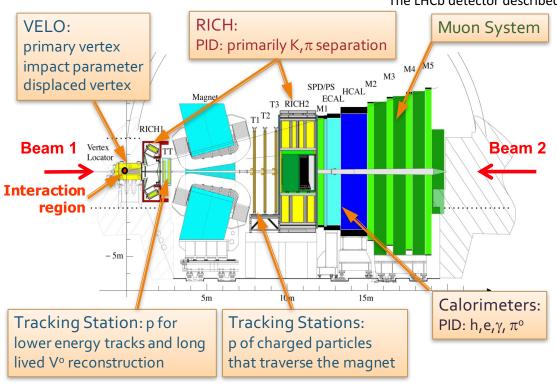
Heavy flavour spectroscopy and exotic states at LHCb

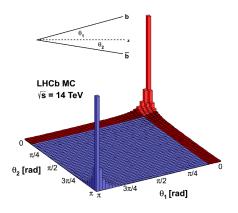
Liming Zhang (Tsinghua University)

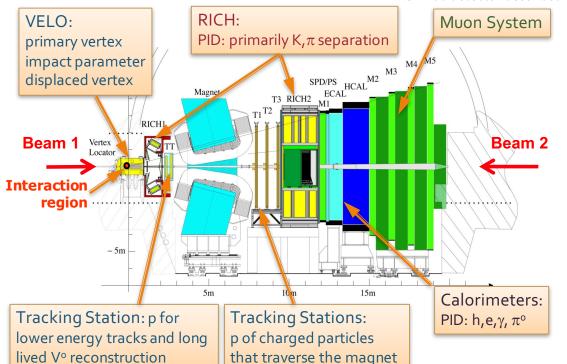

On behalf of the LHCb Collaboration

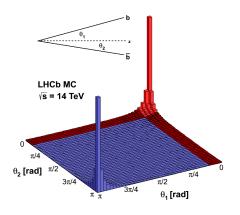
11th FCPPL Workshop 22-25 May, 2018 Marseille, France

Introduction


- Spectroscopy provides opportunities to study QCD predictions for models
 - e.g. lattice QCD, diquark model, potential model ...
- Exotic states are important for understanding strong force in QCD
 - Predicted in quark model
 - Recent results show strong evidence for their existence


LHCb detector


• $2 < \eta < 5$ range: $\sim 25\%$ of $bar{b}$ pairs inside LHCb acceptance


LHCb detector

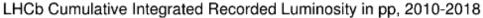
• 2 $< \eta <$ 5 range: \sim 25% of $b\bar{b}$ pairs inside LHCb acceptance

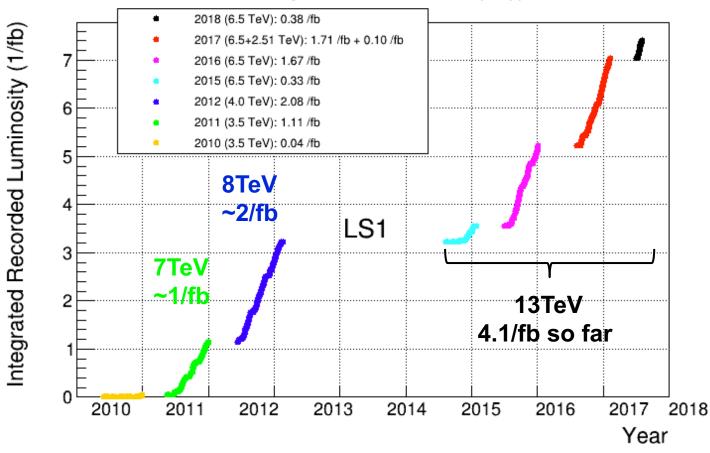
Int. J. Mod. Phys. A 30 (2015) 1530022

Impact parameter: $\sigma_{IP}=20~\mu \mathrm{m}$

Proper time: $\sigma_{\tau} = 45 \text{ fs for } B_s^0 \to J/\psi \phi \text{ or } D_s^+ \pi^-$

Momentum: $\Delta p/p = 0.4 \sim 0.6\% (5 - 100 \text{ GeV}/c)$


RICH $K-\pi$ separation: $\epsilon(K\to K)\sim 95\%$ mis-ID $\epsilon(\pi\to K)\sim 5\%$


Muon ID: $\epsilon(\mu \to \mu) \sim 97\%$ mis-ID $\epsilon(\pi \to \mu) \sim 1-3\%$

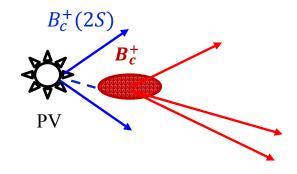
ECAL: $\Delta E/E = 1 \oplus 10\%/\sqrt{E(\text{GeV})}$

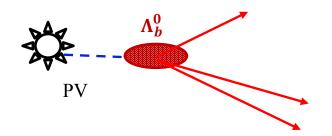
LHCb collected luminosity

 $\sigma(pp \rightarrow b\overline{b}X) \approx 300 \ \mu b \ @7 \ TeV \ vs \approx 500 \ \mu b \ @13 \ TeV$

Physics program at LHCb

- Not only precision measurements in b, c sectors
 - CKM and CP-violation parameters
 - Rare decays
 - Testing lepton universality
 - **–** ...
- But also a general purpose detector
 - Electroweak measurments: $\sin \theta_W$, W/Z, top quark
 - Spectroscopy, exotic hadrons
 - Soft QCD
 - Heavy ions

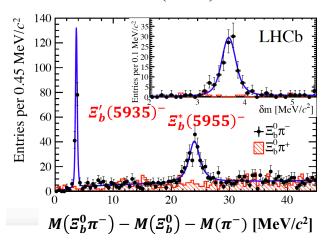

- ...


Two methods for spectroscopy

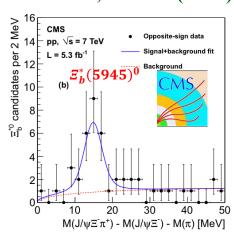
- Direct production in pp collisions
- Combine a heavy flavour (HF) hadron with one or more light particles
- High statistics

- Production by a heavier particle decay, usually with amplitude analysis
- Low background
- Better determination of J^P

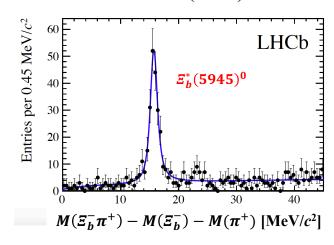
$\boldsymbol{\Xi_b}$ baryon spectroscopy


Numbers of excited b-baryons have already been discovered

$$-\mathcal{E}_{b}'(5935)^{-},\mathcal{E}_{b}^{*}(5955)^{-}\to\mathcal{E}_{b}^{0}\pi^{-}$$

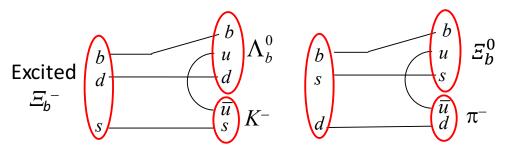

$$-\mathcal{E}_{b}^{*}(5945)^{0} \rightarrow \mathcal{E}_{b}^{-}\pi^{+}$$

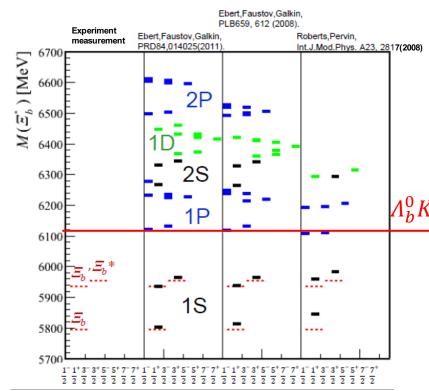
State	J^P	b (sq)
$\boldsymbol{\mathcal{\Xi}_{b}}$	1/2+	↑ (↑ ↓)
${oldsymbol{arepsilon}}_b'$	1/2+	↓ (↑↑)
$\boldsymbol{\mathcal{\Xi}}_{oldsymbol{b}}^{*}$	3/2+	1 (11)


PRL 114 (2015) 062004

PRL 108, 252002 (2012)

JHEP 05 (2016) 161

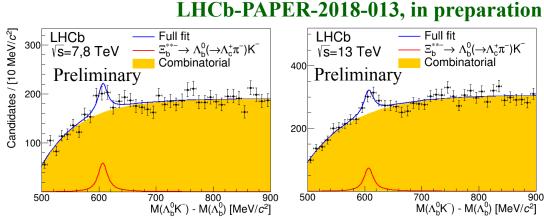


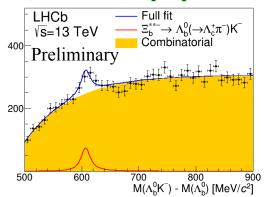

$\boldsymbol{\mathcal{Z}_b}$ baryon spectroscopy

- Numbers of excited b-baryons have already been discovered
 - $-\mathcal{E}_{b}'(5935)^{-},\mathcal{E}_{b}^{*}(5955)^{-}\to\mathcal{E}_{b}^{0}\pi^{-}$
 - $-\mathcal{E}_{b}^{*}(5945)^{0} \to \mathcal{E}_{b}^{-}\pi^{+}$

• The higher excited states are expected to be above $\Lambda_b^0 K$ threshold

First observation of a new \mathcal{Z}_{h}^{**-} state





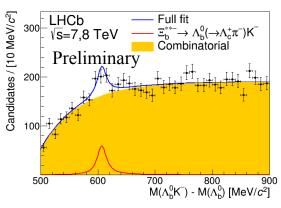
Hadronic $\Lambda_b^0 \to \Lambda_c^+ \pi^-$:

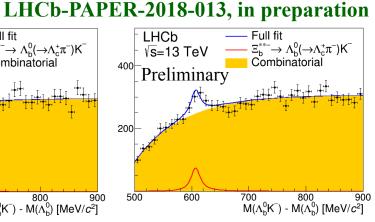
Resolution: 2 MeV

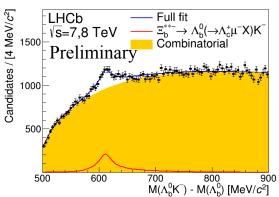
 -7.9σ

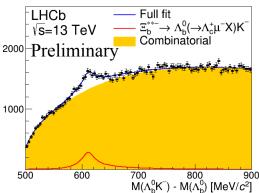
First observation of a new \mathcal{Z}_b^{**-} state

• Hadronic $\Lambda_b^0 \to \Lambda_c^+ \pi^-$:


Resolution: 2 MeV


 -7.9σ


Semileptonic (SL)

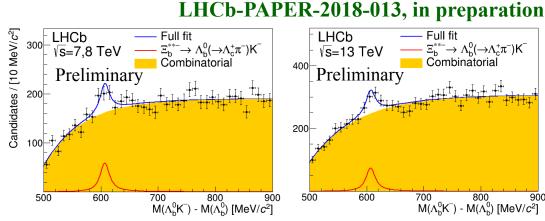

$$\Lambda_b^0 \to \Lambda_c^+ \mu^- X \bar{\nu}_\mu$$

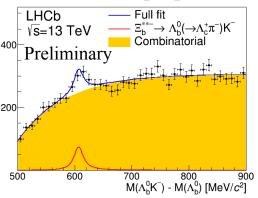
- Resolution: ~18 MeV
- − Yields ~15 larger
- -25σ

First observation of a new \mathcal{Z}_h^{**-} state

Hadronic $\Lambda_h^0 \to \Lambda_c^+ \pi^-$:

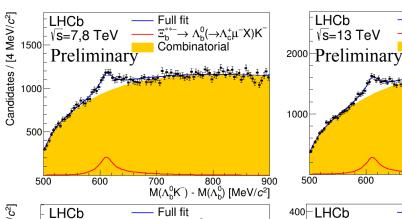
- Resolution: 2 MeV
- -7.9σ

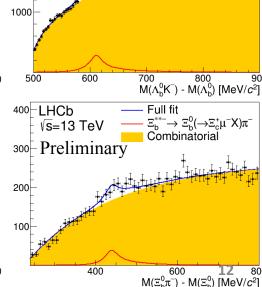

Semileptonic (SL)


$$\Lambda_b^0 \to \Lambda_c^+ \mu^- X \bar{\nu}_{\mu}$$

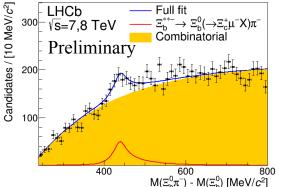
- Resolution: ~18 MeV
- Yields ~15 larger
- -25σ
- Semileptonic (SL)

$$\Xi_b^0 \to \Lambda_c^+ \mu^- X \bar{\nu}_{\mu}$$


 -9.2σ



Full fit


 $\Xi_b^{**-} \to \Lambda_b^0 (\to \Lambda_c^+ \mu^- X) K^-$ Combinatorial

LHCb

√s=13 TeV

The \mathcal{Z}_b^{**-} properties (preliminary)

LHCb-PAPER-2018-013, in preparation

With hadronic mode

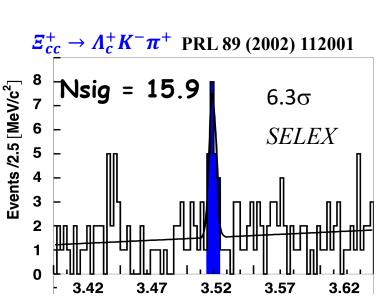
$$M(\Xi_b^{**-}) - M(\Lambda_b^0) = 607.3 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \,\text{MeV}/c^2,$$

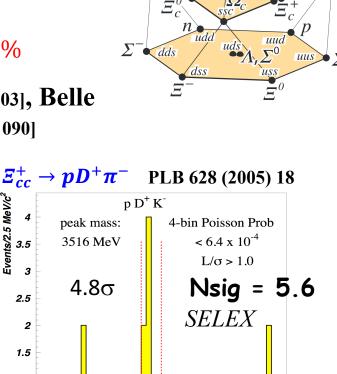
$$\Gamma = 18.1 \pm 5.4 \,(\text{stat}) \pm 1.8 \,(\text{syst}) \,\text{MeV}/c^2,$$

$$M(\Xi_b^{**-}) = 6226.9 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \pm 0.2 (\Lambda_b^0) \,\text{MeV}/c^2,$$

Mass peak position is consistent between the three decay channels

Production ratios are measured with SL modes


Quantity	7+8 TeV	13 TeV
$(\sigma_{\Xi_b^{**-}}/\sigma_{\Lambda_b^0})\mathcal{B}(\Xi_b^{**-}\to\Lambda_b^0K^-)$	$(3.0 \pm 0.4 \pm 0.4) \times 10^{-3}$	$(3.4 \pm 0.4 \pm 0.4) \times 10^{-3}$
$(\sigma_{\mathcal{Z}_b^{**-}}/\sigma_{\mathcal{Z}_b^0})\mathcal{B}(\mathcal{Z}_b^{**-}\to\mathcal{Z}_b^0\pi^-)$	$(47 \pm 9 \pm 7) \times 10^{-3}$	$(22 \pm 6 \pm 3) \times 10^{-3}$


- The new state could be either a $\mathcal{Z}_h(1P)^-$ or $\mathcal{Z}_h(2S)^-$
 - To distinguish them further information needed (e.g. J^{P})

Doubly charmed baryons

- Observation of $\mathcal{Z}_{cc}^+(ccd)$ reported by SELEX
 - Mass: 3518. 7 ± 1.7 MeV
 - Unexpected short lifetime: $\tau(\mathcal{Z}_{cc}^+) < 33$ fs @90% CL, but not zero
 - Large production: $R = \frac{\sigma(\Xi_{cc}^{+}) \times BF(\Xi_{cc}^{+} \to \Lambda_{c}^{+}K^{-}\pi^{+})}{\sigma(\Lambda_{c}^{+})} \sim 20\%$
- Not confirmed by Babar [PRD 74 (2006) 011103], Belle [PRL 97(2006) 162001] nor LHCb [JHEP 12 (2013) 090]

3.52

3.54

3.56

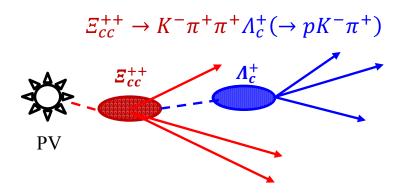
 $M(p D^{\dagger} K)$

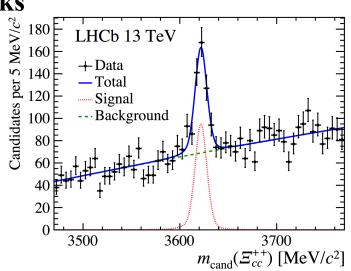
Events/2.5 MeV/c² ... s ... s ... s ... s

2.5

1.5

0.5

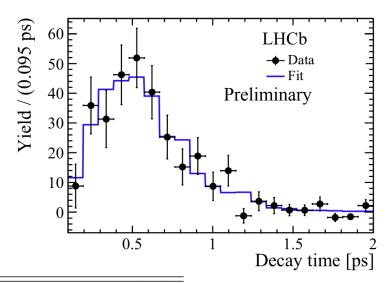

Observation of \mathcal{Z}_{cc}^{++} at LHCb



- Expected to have longer lifetime than \mathcal{Z}_{cc}^+ , higher sensitivity at LHCb
- Decay: $\mathcal{Z}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$, \mathcal{B} could be as large as 10%

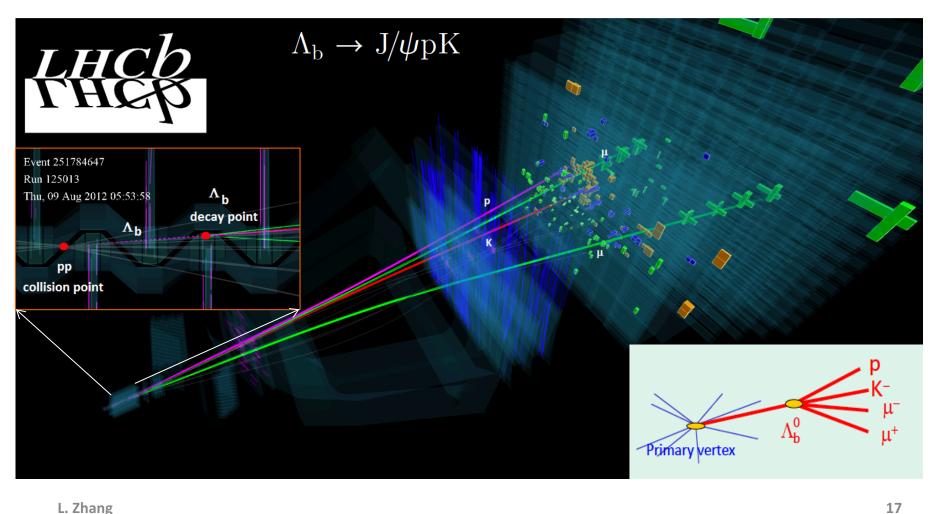
Yu et al., arXiv:1703.09086

- LHCb run II at $\sqrt{s} = 13$ TeV, ~ 1.7 fb⁻¹
 - \rightarrow 313 \pm 33 events, 12 σ
 - \triangleright 8 TeV data analyzed for cross-check, 7σ
 - > Consistent with weakly decays
 - $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 (\text{stat}) \pm 0.27 (\text{syst}) \pm 0.14 (\Lambda_c^+) \text{ MeV}$
 - ~ 100 MeV above SELEX \mathcal{Z}_{cc}^+ peaks



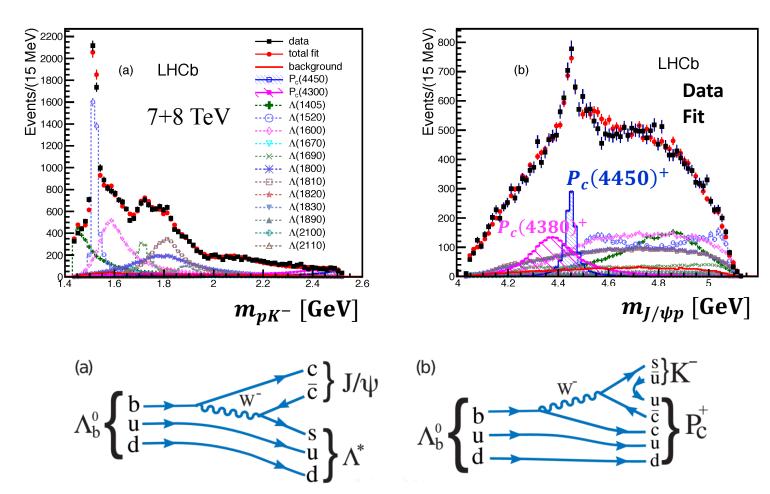
First measurement of \mathcal{Z}_{cc}^{++} lifetime

- Same data with two additional selections (~97% efficiency)
- Measured relative to control channel of same topology, $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$
- Fit procedure is verified by pseudo-experiments
- Robust result against many checks


$$\tau(\mathcal{Z}_{cc}^{++}) = 256_{-22}^{+24} \text{ (stat)} \pm 14 \text{ (syst) fs}$$

Source	Uncertainty (ps	(S)
Signal and background mass models	0.005	new
Correlation of mass and decay-time	0.004	7
Binning	0.001	LHCL DADED 4010 010
Data-simulation differences	() ()()/1	LHCb-PAPER-2018-019, in preparation
Resonant structure of decays	0.011	in preparation
Hardware trigger threshold	0.002	
Simulated Ξ_{cc}^{++} lifetime	0.002	
A_b^0 lifetime uncertainty	0.001	
Sum in quadrature	0.014	

Pentaquark studies



Discovery of pentaquark states

PRL 115 (2015) 072001

• Two pentaquark states observed in $\Lambda_b^0 \to J/\psi p K^-$

Discovery of pentaquark states

PRL 115 (2015) 072001

Amplitude analysis reveals the properties

	$P_c(4380)^+$	$P_c(4450)^+$	Λ_b rest frame $\Phi_{-\pi}$
J ^P preferred	$\frac{3}{2}$	$\frac{5}{2}^{+}$	ψ rest frame $\phi_{p_e} = \pi$
Mass $[MeV/c^2]$	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$	ut Property of the party of the
$Width\;[\mathrm{MeV}]$	$205\pm18\pm86$	$39 \pm 5 \pm 19$	$\phi_{\mu}^{P_c} - \pi$ P_c rest frame
Significance	9σ	12σ	F _c lest frame ψ
	•		$\Lambda_{\rm b}$

Confirmed by a model independent analysis

PRL 117 (2016) 082002

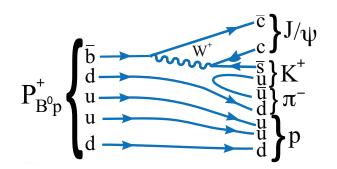
Production & decay

Chin. Phys. C 40 (2016) 011001

$$\mathcal{B}(\Lambda_b^0 \to P_c^+(4380)K^-)\mathcal{B}(P_c^+ \to J/\psi \, p) = \left(2.56 \pm 0.22 \pm 1.28 \, {}^{+\, 0.46}_{-\, 0.36}\right) \times 10^{-5} \\ \mathcal{B}(\Lambda_b^0 \to P_c^+(4450)K^-)\mathcal{B}(P_c^+ \to J/\psi \, p) = \left(1.25 \pm 0.15 \pm 0.33 \, {}^{+\, 0.22}_{-\, 0.18}\right) \times 10^{-5}$$

Weakly decaying b-flavoured

pentaquarks


PRD 97 (2018) 032010

 Skyrme model: heavy quarks give tightly bound pentaquark

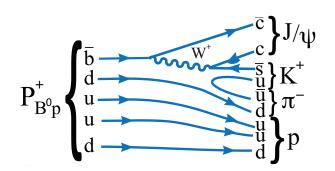
PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362

Search for mass peaks below strong decay threshold

Mode	Quark content	Decay mode	Search window
I	$\overline{b}duud$		$4668-6220 \ { m MeV}$
II	$b\overline{u}udd$	$P_{\Lambda_{0}\pi^{-}}^{-} \rightarrow J/\psi K^{-}\pi^{-}p$	$46685760~\mathrm{MeV}$
III	$b\overline{d}uud$	$P_{\Lambda_{\nu}^{0}\pi^{+}}^{+} \to J/\psi K^{-}\pi^{+}p$	$46685760~\mathrm{MeV}$
\mathbf{IV}	$ar{b}suud$	$P_{B_s^0 p}^+ \to J/\psi \phi p$	$50556305~\mathrm{MeV}$

Weakly decaying b-flavoured

pentaquarks


PRD 97 (2018) 032010

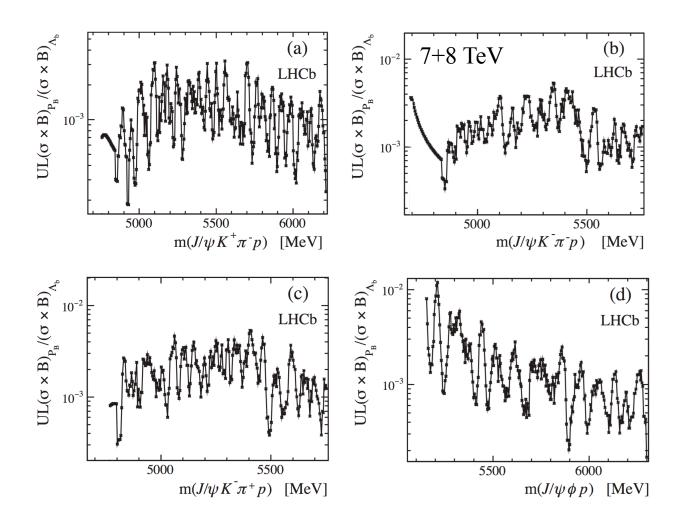
 Skyrme model: heavy quarks give tightly bound pentaquark

PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362

Search for mass peaks below strong decay threshold

Mode	Quark content	Decay mode	Search window
I	$\overline{b}duud$	$P_{B^0p}^+ \to J/\psi K^+\pi^- p$	$4668-6220 \ { m MeV}$
II	$b\overline{u}udd$	$P^{-}_{\Lambda^0_{\iota}\pi^-} \rightarrow J/\psi K^-\pi^- p$	$46685760~\mathrm{MeV}$
III	$b\overline{d}uud$	$P_{\Lambda_b^0\pi^+}^+ \rightarrow J/\psi K^-\pi^+ p$	
IV	$\overline{b}suud$	$P_{B_s^0p}^+ \to J/\psi \phi p$	$50556305~\mathrm{MeV}$

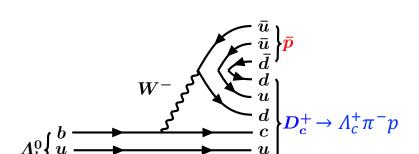
• Upper limit on production ratio $\sigma \cdot \mathcal{B}$ wrt $\Lambda_b^0 \to J/\psi K^- p$


$$R = \frac{\sigma(pp \to P_B X) \cdot \mathcal{B}(P_B \to J/\psi X)}{\sigma(pp \to \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 \to J/\psi K^- p)}$$

Weakly decaying *b*-flavoured pentaquarks PRD 97 (2)

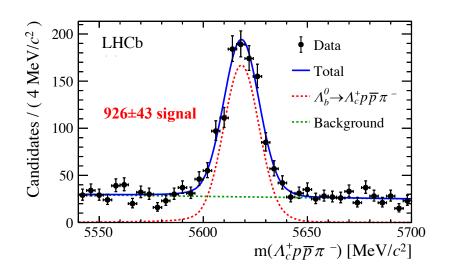
PRD 97 (2018) 032010

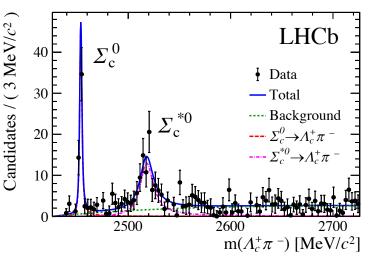
• No evidence for signal, 90% CL limits on $R < 10^{-2} - 10^{-3}$


Search for dibaryon state

• A dibaryon state [cd][ud][ud]could be produced in Λ_b^0 decays to final state $\Lambda_c^+\pi^-p\bar{p}$

L. Maiani, et al. PLB 750 (2015) 37


• LHCb has discovered the decay $\Lambda_b^0 \to \Lambda_c^+ \pi^- p \bar{p}$

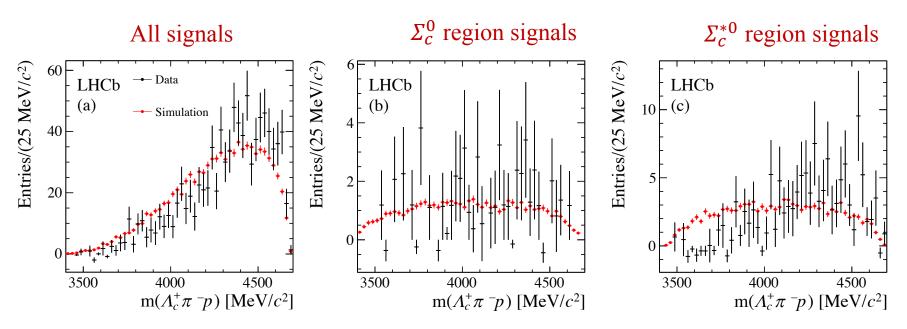


arXiv:1804.09617 submitted to PLB

LHCb-PAPER-2018-005

Resonance contributions

Search for dibaryon state



Ratio of branching fractions

LHCb-PAPER-2018-005 arXiv:1804.09617 submitted to PLB

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032$$

• No obvious dibaryon peak in $m(\Lambda_c^+\pi^-p)$ spectra

Summary

- LHCb has made important contributions to the knowledge of hadron spectroscopy
 - Observation/study of excited B(D) mesons & b(c) baryons
 - Observation/study of exotic states
 - Discovery of doubly charmed baryons

- ...

- Stay tuned with new results from RUNI+RUNII
- Spectroscopy at the upgraded LHCb is challenging and promising

Backup

Muonic decays of χ_{c1} and χ_{c2}

PRL 119 (2017) 221801

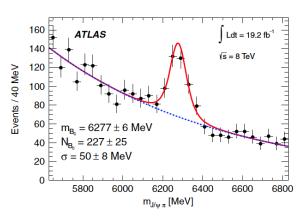
- $c\bar{c}$ states χ_c usually studied in $\chi_c \to J/\psi \gamma$ decays
- First observation of $\chi_c \rightarrow J/\psi \mu^+ \mu^-$ decays
- Much better mass resolution allows competitive mass and width measurements

1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	والريد والوصيرة	or production of the second
2000 LHCb N	$U_{\chi_{c1}} = 4755 \pm 8$	Intresurt _
1600 1.0 fb ⁻¹	7 TeV	$\chi_{c1,c2} \to J/\psi \mu^+\mu^-$ background
2000 LHCb N 1800 LHCb N 1600 LHCb N 1200 L	3 TeV	$N_{\chi_{c2}} = 3969 \pm 96$
1000 =	i i	
800 600 	•	
400 = 200 = -		
	3.5	3.55

Quantity	LHCb	Best previous	World average
[MeV]	measurement	measurement	world average
$m(\chi_{c1})$	3510.71 ± 0.10	3510.72 ± 0.05	3510.66 ± 0.07
$m(\chi_{c2})$	3556.10 ± 0.13	3556.16 ± 0.12	3556.20 ± 0.09
$\Gamma(\chi_{c2})$	2.10 ± 0.20	1.92 ± 0.19	1.93 ± 0.11

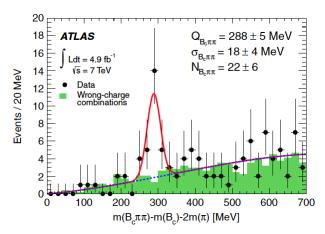
 $m(J/\psi \mu^+ \mu^-)$ [GeV]

$B_c^{(*)^+}(2S) \to B_c^{(*)^+} \pi^+ \pi^- \text{ from ATLAS}$

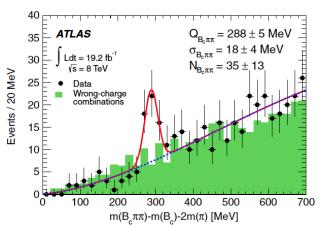


Based on a yield of 327

$$B_c^+ \to J/\psi \pi^+$$
 decays


Data	Signal events
7 TeV	100 ± 23
8 TeV	227 ± 25

ATLAS, PRL 113 (2014) 212004



ATLAS observed a peak in $B_c^+\pi^+\pi^-$ spectrum

$$m_{B_c(2S)} = 6842 \pm 4 \pm 5 \text{ MeV}$$

5.2σ

$B_c^{(*)^+}(2S) \rightarrow B_c^{(*)^+}\pi^+\pi^-$ search at LHCb

Signal region

350 ⊨ LHCb 2 fb-

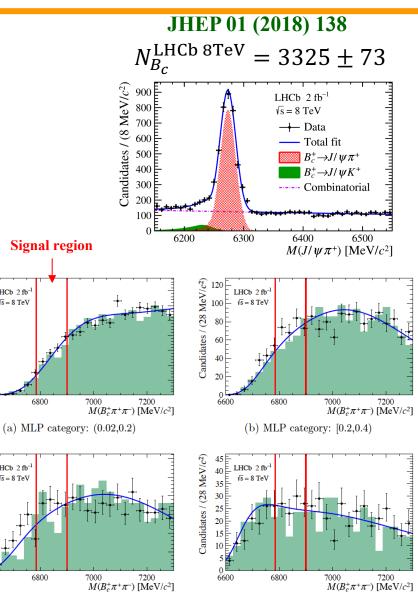
6800

(c) MLP category: [0.4,0.6)

100 =

Candidates / $(28 \text{ MeV}/c^2)$

√s = 8 TeV



The peak could be due to

$$- B_c^+(2S) \to B_c^+ \pi^+ \pi^- \text{ or }$$

-
$$B_c^{*+}(2S) \rightarrow B_c^{*+}\pi^+\pi^-$$
with
 $B_c^{*+} \rightarrow B_c^+\gamma$ (missing)

- LHCb used $\sim 3300 B_c^+$ signals and searched for $B_c^{(*)+}(2S)$
- No $B_c^{(*)+}(2S)$ signal

(d) MLP category: [0.6,1.0]

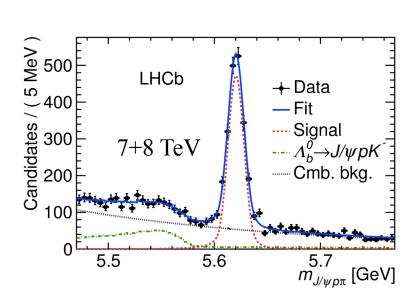
$B_c^{(*)^+}(2S) \to B_c^{(*)^+} \pi^+ \pi^-$ search at LHCb

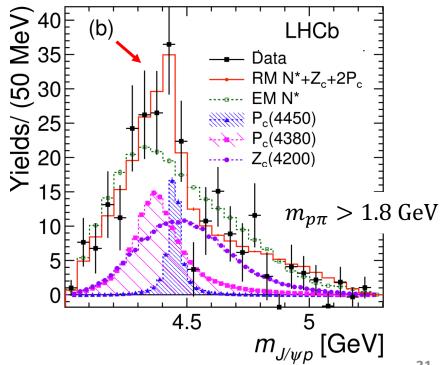
JHEP 01 (2018) 138

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-)$$

$$\frac{\sqrt{s} = 7 \,\text{TeV}}{\text{ATLAS}} \quad \frac{\sqrt{s} = 8 \,\text{TeV}}{(0.22 \pm 0.08 \,(\text{stat}))/\varepsilon_7} \quad \frac{(0.15 \pm 0.06 \,(\text{stat}))/\varepsilon_8}{(0.04, 0.09]}$$

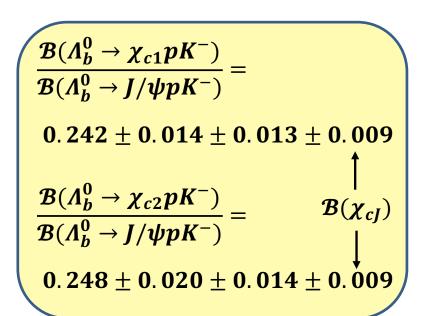
Upper limit @95%CL

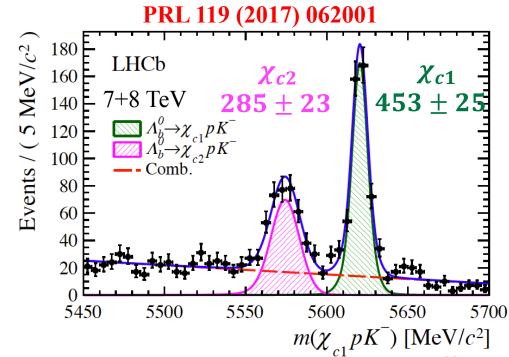

 ε_7 , ε_8 : relative efficiencies of reconstructing $B_c^{(*)}(2S)^+$ wrt B_c^+


- ATLAS did not publish ε_7 , ε_8
- More studies needed to resolve the tension between ATLAS and LHCb.

Study of $\Lambda_h^0 \to J/\psi p \pi^-$

- Cabbibo suppressed mode with less statistics
- Exotic Z_c^- contribute in $J/\psi\pi^-$
- Fit with $2 P_c^+ + Z_c(4200)^-$ favored by 3σ compared to no exotic contributions

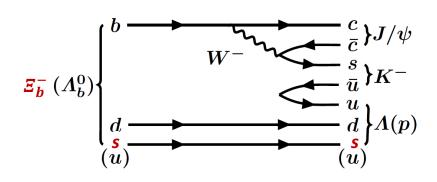

Observation of $\Lambda_b^0 \to \chi_{c(1,2)} p K^-$



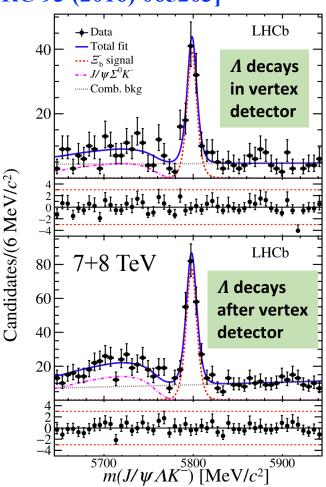
• Search for $P_c(4450)^+$ in $\Lambda_b^0 \to \chi_{c(1,2)} p K^-$ decays \to Test hypothesis of kinematic rescattering effect

PRD 92 (2015) 071502

- First step: observe the decays, measure \mathcal{B}
- Use $\chi_{c(1,2)} \to J/\psi \gamma$, constrain $J/\psi \gamma$ mass to known χ_{c1} mass



Observation of $\Xi_b^- \to J/\psi \Lambda K^-$



- Strange pentaquark ($udsc\overline{c}$) predicted in [PRL 105 (2010) 232001]
- Can be searched for in the Ξ_b^- decay [PRC 93 (2016) 065203]

 $N_{\rm sig} = 308 \pm 21 \ (21\sigma)$ PLB 772 (2017) 265-273

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \Lambda K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda)} = (4.19 \pm 0.29 \pm 0.15) \times 10^{-2}$$

