

11th France China Particle Physics Laboratory Workshop MAY 22-25, 2018 - MARSEILLE, FRANCE

The JUNO experiment : physics perspectives and status

Mariangela Settimo for the JUNO Collaboration SUBATECH, CNRS-IN2P3, Nantes (France)

The Jiangmen Underground Neutrino Observatory

A challenging goal: the neutrino mass hierarchy

The biggest liquid scintillator experiment ever built Sensitive to two oscillations -> first time!

Neutrino oscillation from \overline{v}_e disappearance

Neutrino oscillation from \overline{v}_e disappearance

- Excellent energy resolution (3%/ \sqrt{E}) and energy scale accuracy (1%)
- Precise detector position and NPP baselines difference (< 500m)

How the detector works?

Daya Bay, China

Double Chooz, France

SNO, Canada

Capitalize on previous experiences to reach :

- 1. Large statistics
- 2. Unprecedented resolutions

A well known detection technique

Liquid Scintillator (Anti)neutrino Detector

reject background

Some numbers: signal and background events

Background sources

Accidentals (material radioactivity)

- Radio-purity control ►
- Fiducial volume cuts ►
- distance on the prompt-delayed pair ►
- Cosmogenic (⁹Li/⁸He)
 - Muon reconstruction/veto ►
- Geo-neutrino

Event rate per day

Selection	IBD efficiency	IBD	Geo- νs	Accidental	9 Li/ 8 He	Fast n	(α, n)
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71		
Vertex cut	98.7%			1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60			3.8		
						$C_{\alpha\alpha} \in D_{\alpha}$	orrot's ta

See r. renous

The JUNO detector

17000 LPMT (20" diameter) **25000 SPMT** (3" diameter)

see C. Cerna's talk

The Stereo Calorimetry (a project lead mostly by France and China)

Looking at the same events with different instruments

Looking at the same events with different instruments

SPMT as "aider" of the LPMT

- Breaks the non-linearity/non-uniformity degeneracy for high precision calorimetry
- Enlarge energy range (LPMT saturation)
- Improve central-detector µ-reconstruction
 → Aide ⁹Li/⁸He tagging/vetoing

SPMT as "aider" of the LPMT

- Breaks the non-linearity/non-uniformity degeneracy for high precision calorimetry
- Enlarge energy range (LPMT saturation)
- Improve central-detector µ-reconstruction
 → Aide ⁹Li/⁸He tagging/vetoing
- Stand-alone physics e.g. measurement of solar oscillation parameters
 - → Ensure accurate physics results and validate energy scale

High rate Supernova pile-up (if very near)

→ Minimise bias in absolute rate & energy spectrum

Solar parameter measurement with 25k SPMTs is comparable with LPMTs and will at least improve the current sensitivities down to 0.5-1%

Can use solar oscillations to compare the SPMT and LPMT energy scales (→ internal redundancy check!)

A vast physics program

Exotics (Sterile neutrino, dark matter, proton decay,...)

Details in J. Phys. G 43 (2016) no.3, 030401

JUNO sensitivity to Mass Hierarchy

Mass Hierarchy Sensitivity

100k signal events (20kt x 36GW x 6 years) $\Delta \chi^2$: Fitting wrong model - Fitting correct one Unconstrained (JUNO only) $\Delta \chi^2 \sim 10$ Using external $\Delta m_{\mu\mu}$ (1.5% precision) from long baseline exps: $\Delta \chi^2 \sim 14$

Sensitivity to the Oscillation Parameters

SN explosion rate in our Galaxy ~ 1/30-40 yr. Must not be missed!

SN 1987A

JUNO one of the best supernova neutrino detectors

Supernova Neutrino Burst

• Huge amount of energy $(3 \times 10^{53} \text{ erg})$ emitted as neutrinos in < 10 s

Unique astrophysics implications from the measured spectra

Diffuse Supernova Neutrino Background (DSNB)

Integrated neutrino flux from all past core-collapse events

- cosmic star formation rate, average core-collapse spectrum, rate of failed SNe.

- 3 σ expected for observation after 10 years (for most favorable DSNB parameters) or tight exclusion limits (if no-positive signal)

Geo-neutrinos

Earth's surface heat flow: 46 \pm 3 TW. v from U/Th decay chains to understand:

- Earth's formation and evolution
- crust and mantle composition
- mantle convection (driver of plate tectonics)
- 17-25% uncertainty on geo-v (U + Th) flux from KamLAND + Borexino data

JUNO will collect ~ 400 events/yr (largest sample so far ~ 150 events)

- geo-v detection by IBD. **Reactor-v** as main background source

Signal extracted by a template fit.
Estimated uncertainties on (U+Th) flux:
17% after 1 year, 6% in 10 years

DETECTOR STATUS

Civil Construction continuing ...

A new underground lab under construction with infrastructures on surface

Some main steps towards JUNO....

Acrylic sphere a 4 m prototype in progress

Steel structure

CD,VETO structure design completed Bidding completed and contract signed

Acrylic panel

Onsite assembly

Calibration systems

4 sub-systems designed

Liquid Scintillator

Progresses in LS choice (yield, contamination studies), distillation plant and purification system.

Some main steps towards JUNO: the Top Tracker

- The design of the TT mechanical support validated with the prototypes.
- The assembly procedure elaborated and approved by Chinese side

• TT shipped to China

detaíls ín E. Baussan's talk

Some main steps towards JUNO: the SPMTs

- SPMTs bidding in 2017 (HZC selected) Production and acceptance tests started ▶ ~3000 PMTs produced and tested @ HZC A 10% sample tested at IHEP (good agreement)
- PMT potting, cabling and connectors • HV, Electronics: board ready and under test • underwater boxes: design and prototypes

... much more in

C. Cerna's talk

Some main steps towards JUNO: the LPMTs

LPMT (20") production and testing started

~ 6000 LPMT delivered

Electronics design defined, v0 production and testing in progress

Scanning stations for LPMT

Uniformity scan station

Example of uniformity test

An international collaboration

17 countries, 72 institutions (+ 4 observers) ~ 550 collaborators

USA(2)

Conclusions

JUNO unprecedented large & high precision-calorimetry liquid scintillator detector

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO
Target mass	20 ton	~ 300 ton	~ 1 kton	20 kton
Optical coverage	12%	34%	34%	75%
Light yield	160 p.e./MeV	500 p.e./MeV	250 p.e./MeV	1200 p.e./MeV
Energy resolution	7.5%/√E	5%/ √ E	6%/ √ E	3%/√E
Energy calibration	1.5%	~ 1%	2%	< 1%

Multi-purpose experiment :

- reactor v : Mass Hierarchy sensitivity, < 1% precision on the oscillation parameters
- "non-reactor" v: A vast program for (supernova physics, geo-neutrinos, solar v, ...)

Many progresses on going on civil and detector construction

Several sub-projects based a very close and successful collaboration between China and France

