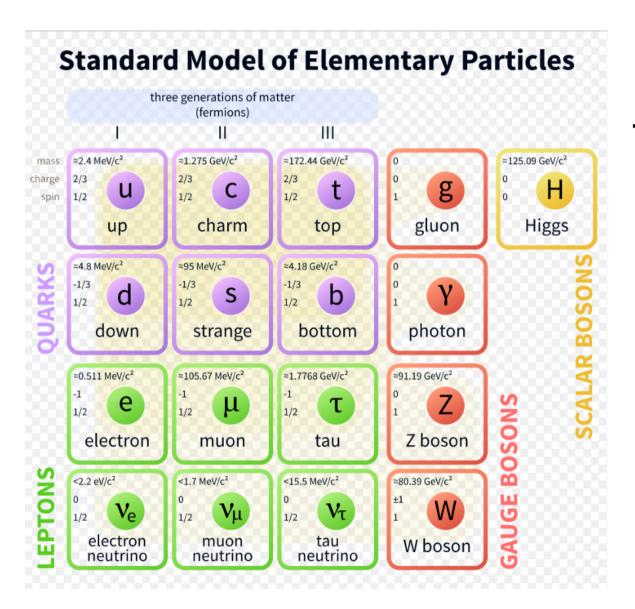
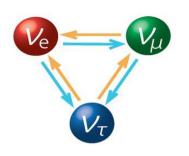
Search for doubly charged Higgs boson decaying to same-sign W boson.

Hanlin Xu^{1,2}
On behalf of the analysis team.


University of Science and Technology of China¹
Centre de Physique des Particules de Marseille²
USTC/CPPM FCPPL Cooperation

May 22, 2018


The Standard Model of Particle Physics

The Standard Model

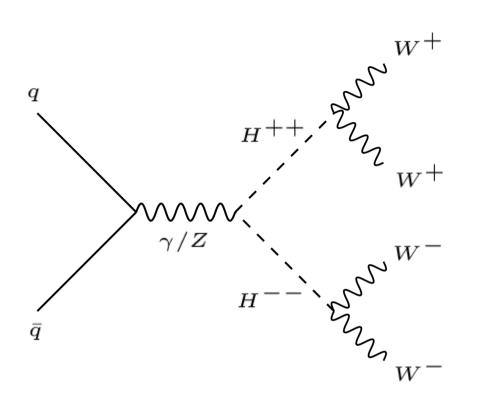
- Field theory with a gauged symmetry
- Describes 3 of the 4 forces in nature
- Matter particles (fermions) and their interactions (bosons)
- Include a mechanism to generate masses of these particles

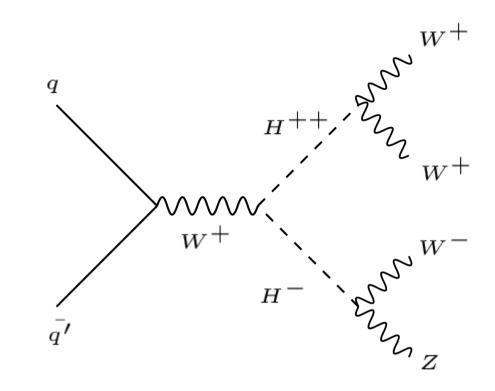
Motivation

- Neutrino oscillations is an incompleteness of the Standard Model.
- Can extending the scalar sector solve it?

Scalar Sector

The doublet triplet model(DTM) extends the scalar sector to include a hypercharge Y = 2 scalar triplet Δ , together with the SM scalar doublet.


$$\begin{split} \mathcal{L} &= (D_{\mu}H)^{\dagger}(D^{\mu}H) + Tr(D_{\mu}\Delta)^{\dagger}(D^{\mu}\Delta) - V(H,\Delta) + \mathcal{L}_{Yukawa} \\ \mathcal{L}_{Yukawa} &= \mathcal{L}_{Yukawa}^{SM} - \underset{Y_{\nu}L}{}^{T}C \otimes i\sigma^{2}\Delta L \\ V(H,\Delta) &= -m_{H}^{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^{2} + m_{\Delta}^{2}Tr(\Delta^{\dagger}\Delta) \\ &+ [\mu(H^{\dagger}i\sigma^{2}\Delta^{\dagger}H) + h.c.] + \lambda_{1}(H^{\dagger}H)Tr(\Delta^{\dagger}\Delta) + \lambda_{2}(Tr\Delta^{\dagger}\Delta)^{2} + \lambda_{3}Tr(\Delta^{\dagger}\Delta)^{2} \\ &+ \lambda_{4}H^{\dagger}\Delta\Delta^{\dagger}H. \end{split}$$


Type-II Seesaw Model

- An explaintion of the oscillations and finite mass of neutrinos.
- Predicting new scalars, some of which have mass in electroweak scale range.
- Electroweak Symmetry Breaking causes a mixing between these fields and results in 7 scalar bosons:

$$H^{\pm\pm}, H^{\pm}, \Lambda^0(CP \ odd), H^0(CP \ even), h^0(CP \ even)$$

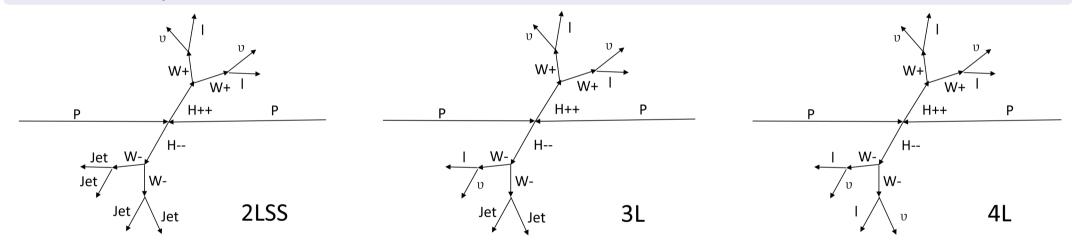
Production Mode

Pair Production

Associated Production

Focus on the pair production mode: $pp o \gamma^*, Z^* o H^{\pm\pm}H^{\mp\mp}$

Require H^{\pm} heavier than the $H^{\pm\pm}$ by a few 100 GeV(Large λ_4) to suppress the associated production.


Two decay mode:

 $H^{\pm\pm} \to \ell^\pm\ell^\pm$ (arxiv: 1710.09748) massed below 800 GeV have been excluded $H^{\pm\pm} \to W^\pm W^\pm$ (This analysis)

Outline

Three channels according to different final states.

- Two same sign leptons, MET and four jets.
- Three leptons, MET and two jets.
- Four leptons, and MET.

- Consider different masses of $H^{\pm\pm}$, from 200 GeV to 700 GeV. (100 GeV step)
- 36.1 fb^{-1} data collected with \sqrt{s} = 13 TeV during 2015 and 2016 are using in this analysis.

Lepton Definition

	Electrons		Muons	
Lepton candidate type	L	T	L	T
Lepton $p_{ m T}$	$p_{ m T} > 10~{ m GeV}$		$p_{ m T} > 10~{ m GeV}$	
Pseudo-rapidity	$ \eta < 2.47$, not in crack $1.37:1.52$		$ \eta < 2.5$	
Identification and isolation	loose	tight	loose	tight
Impact parameter longitudinal $ z_0 \sin \theta $	< 0.5 mm	$< 0.5 \; \mathrm{mm}$	< 0.5 mm	$< 0.5 \; \mathrm{mm}$
Impact parameter transverse $ d_0 /\sigma(d_0)$	< 5	< 5	< 3	< 3

- Two types of lepton requirements are used for both electrons and muons:
- Tight (denoted by T) and Loose (denoted by L)
- The type L conditions are a subset of the type T conditions.

Overview of 2LSS channel

2LSS channel

$$H^{\pm\pm}H^{\mp\mp} \rightarrow 4W \rightarrow \ell^{\pm}\ell^{\pm} + E_T^{\text{miss}} + 4jets$$

Three sub channels: $ee, e\mu, \mu\mu$

Background

- Prompt background:
 - WZ,ZZ and same-sign WW: Monte Carlo.
- Charge-MisID background :
 - W^+W^- and Z+jets will contribute addition background by Charged MisID:
 - Data-driven likelihood method.
- Fake background:
 - Z+jets, W+jets and $t\bar{t}$: data-driven fake-factor method.

Event Pre-selection

Trigger requirement
Two T leptons with same sign , $p_T >$ 30, 20 GeV respectively.
$ M_{ll} $ <80 GeV or $ M_{ll} $ > 100 GeV for ee channel
No b-jet, MV2c10_70 working point
Njets ≥ 3
$E_{\mathrm{T}}^{\mathrm{miss}} > 70~\mathrm{GeV}$

Event Pre-Selection of the di-lepton same sign analysis

Trigger requirement:

- At least one lepton with $P_T > 30~{\rm GeV}$ matched to the single-lepton trigger signals

Fake Enriched region:

- At least one of the leptons is required to pass type L and fail type T

Fake Control region:

- $E_{\mathrm{T}}^{\mathrm{miss}}$ < 70 GeV

Charge Mis-identification

Likelihood Method

$$\ln \mathcal{L}(\boldsymbol{\varepsilon}|N_{tot},N_{ss}) = \sum_{i,j} \ln \left[N_{tot}^{i,j} (\boldsymbol{\varepsilon}_i + \boldsymbol{\varepsilon}_j) \right] N_{SS}^{i,j} - N_{tot}^{i,j} (\boldsymbol{\varepsilon}_i + \boldsymbol{\varepsilon}_j) \tag{1}$$

- Rates of muon is negligible
- Rates of Type-T electrons are measured with T+T pair, with fine binning.
 |η|: 0, 0.6, 1.1, 1.37, 1.52, 1.7, 2.3, 2.47
 - $P_T[GeV]$: 20, 60, 90, 130, 1000
- Rates of Type-L electrons are measured with L(not T)+T pair, with coarse binning:

 $|\eta|$: 0, 1.37, 1.52, 2.47

 $P_T[GeV]$: 20, 60, 1000

- Charge-MisID rates nominal results: [0.021,9.921] in percent for T, while [0.68,12.18] in percent for L electrons due to different bins.
- A systematic uncertainty of 30% is estimated from Monte Carlo samples due to Kinematic Difference

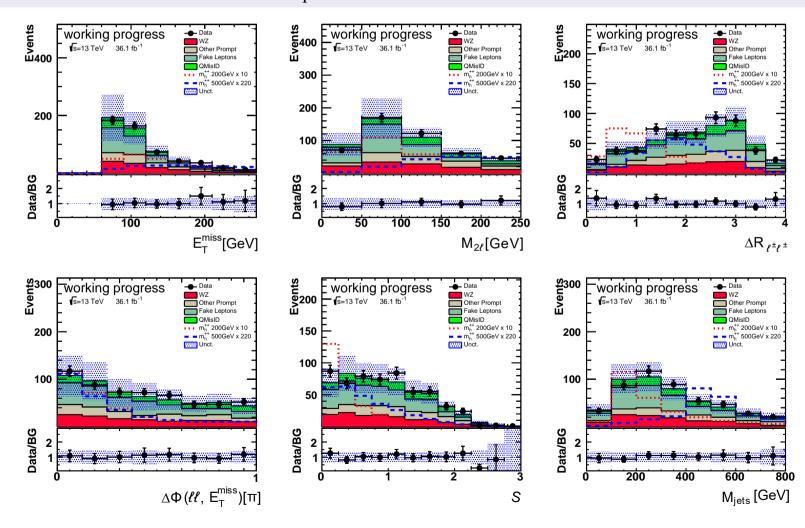
Fake Factor Method

- The fake factor is defined as ratio:

$$\theta_{\ell} = \frac{N_{\ell\ell}(\textit{Events of two T same-sign leptons})}{N_{\ell\ell}(\textit{Events of one T and one L non-T same-sign leptons})}$$

- Fake factors are measured in low E_T^{miss} region (< 70 GeV).
- Muon fake factor is measured in $\mu\mu$ channel.
- Electron fake factor is measured in $e\mu$ channel.

$$\theta_{e} = \frac{N_{\mu e}}{N_{\mu e}} (E_{T}^{miss} < 70 \text{ GeV}) = \frac{N_{\mu e}^{Data} - N_{\mu e}^{Prompt SS} - N_{\mu e}^{QMisId} - N_{\mu e}^{FakeMuon}}{N_{\mu e}^{Data} - N_{\mu e}^{Prompt SS} - N_{\mu e}^{QMisId}}$$


$$\theta_{\mu} = \frac{N_{\mu \mu}}{N_{\mu \mu}} (E_{T}^{miss} < 70 \text{ GeV}) = \frac{N_{\mu \mu}^{Data} - N_{\mu \mu}^{Prompt SS}}{N_{\mu \mu}^{Data} - N_{\mu \mu}^{Prompt SS}}$$

The measured muon fake factor is 0.14 ± 0.03 , and the measured electron fake factor is 0.48 ± 0.07 , where the uncertainties are only statictical.

A systematic uncertainty of 50% is estimated from complementary control samples.

Discriminating Variables

- Six variables are used on top of pre-selection level to go to signal region
- E_T^{miss} , $\Delta R_{\ell\ell}$, $\Delta \Phi(\ell\ell, E_T^{miss})$, S, $M_{\ell\ell}$, M_{jets}
- Variable S: $S = \frac{rms(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_{\mathrm{T}}^{\mathrm{miss}}}) * rms(\phi_{j_1}, \phi_{j_2}, \cdots)}{rms(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_{\mathrm{T}}^{\mathrm{miss}}}, \phi_{j_1}, \phi_{j_2}, \cdots)}.$

Overview of 3L channel

3L channel

- $H^{\pm\pm}H^{\mp\mp} \rightarrow 4W \rightarrow \ell^{\pm}\ell^{\mp}\ell^{\mp} + E_T^{\mathrm{miss}} + 2jets$
- Two subchannel: SFOS0, SFOS1,2
- SFOS0: no same flavor opposite sign leptons
- SFOS1,2: presence of same-flavor opposite sign leptons

Background

Prompt background:

- WZ, ZZ: Monte Carlo

Fake background:

- : $t\bar{t}$, Z+jets: data-driven fake-factor method.

Definitions of regions

	Selection Criteria	Y	X	Z	Т
Α	Three leptons with $P_T^{0,1,2} > 10,20,20 GeV$				
В	$ M_{01} - M_Z > 10 \text{ GeV}$ and $ M_{02} - M_Z > 10 \text{ GeV}$				
*	$ M_{01} - M_Z \le 10 \text{ GeV or } M_{02} - M_Z \le 10 \text{ GeV}$				
	$M_{01} > 15 \text{ GeV}$ and $M_{02} > 15 \text{ GeV}$				$ \sqrt{ }$
	MET > 30 GeV				$ \sqrt{ }$
	$ N_{\rm jet}>=2$				$ \sqrt{ }$
*	$N_{\rm jet} = 1$				
*	$N_{\rm jet}>=1$				
С	$N_{b-jet} = 0$				
*	$N_{b-jet} >= 1$				

- Y: Region in which fake factors are measured.
- X: Pre-selection region used to optimize variables and reach the SR
- Z: Z-enriched region.
- T: Top enriched region.

Fake Factor Method

Fake Factor fomula

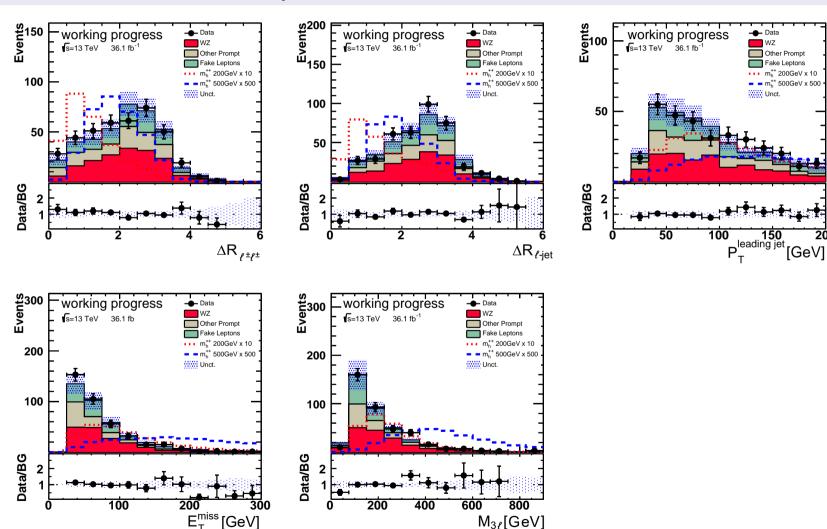
The fake factors are calculated in the YS and YF regions using the formula:

$$heta_{\mathrm{e}/\mu} = rac{(Data-N_{prompt})_{\mathrm{xee/x}\mu\mu}}{(Data-N_{prompt})_{\mathrm{xee/x}\mu\mu}}$$

Fake Contribution

$$egin{align} N_{ ext{xe}\mu} &= heta_{ ext{e}} imes N_{ ext{x}\mu
otin} + heta_{\mu} imes N_{ ext{xe}\mu} \ N_{ ext{xe}} &= heta_{ ext{e}} imes N_{ ext{x}\mu} &= heta_{\mu} imes N_{ ext{x}\mu} \ N_{ ext{x}\mu} &= heta_{\mu} imes N_{ ext{x}\mu} &= heta_{\mu} imes$$

Fake Factor Result


The muon fake factor is found to be 0.17 ± 0.06 and the electron fake factor is found to be 0.39 ± 0.07 , where the errors are statistical only.

A systematic uncertainty of 55%(for electrons) and 81%(for muons) is estimated from complementary control samples.

14/23 Hanlin Xu Double Charged High

Discriminating variables

- Five variables are used on top of pre-selection level to go to signal region
- E_T^{miss} , $M_{3\ell}$, $P_T^{leading\ jet}$, $\Delta R_{\ell-jet}$, $\Delta R_{\ell^\pm\ell^\pm}$

Overview of 4L channel

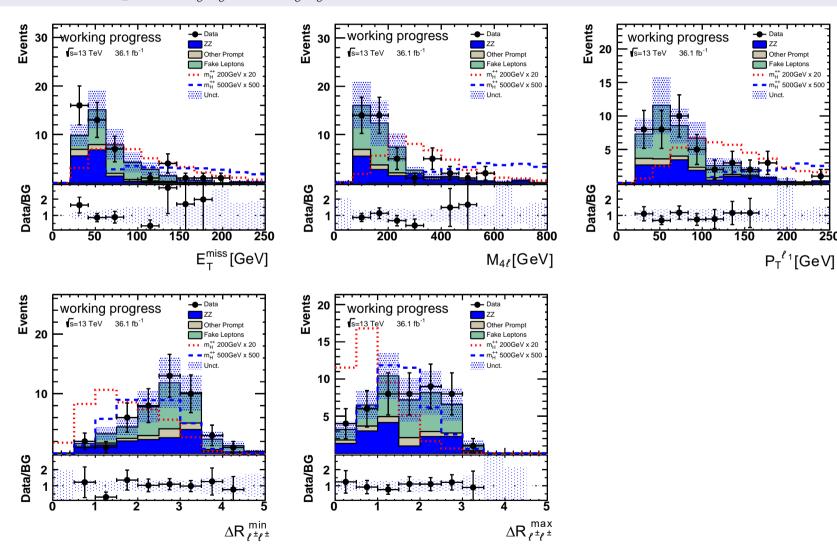
4L channel

- $H^{\pm\pm}H^{\mp\mp}
ightarrow 4W
ightarrow \ell^{\pm}\ell^{\pm}\ell^{\mp}\ell^{\mp} + E_T^{
m miss}$

background

- Prompt background: Monte Carlo
- Fake leptons: Process-dependent scale factors with Monte Carlo

Pre-Selection


- 4 Leptons
- Zero total charge and trigger match
- $|M_{\ell^{\pm}\ell^{\mp}-M_Z}| > 10 GeV$
- $M_{\ell^{\pm}\ell^{\mp}} > 12 GeV$
- $E_T^{miss} > 30 GeV$
- $N_{b-iet} = 0$

Control region to calculate fake scale factor

- Z+jets events (light-jet environment)
- ttbar events (heavy-jet environment)

Discriminanting variables

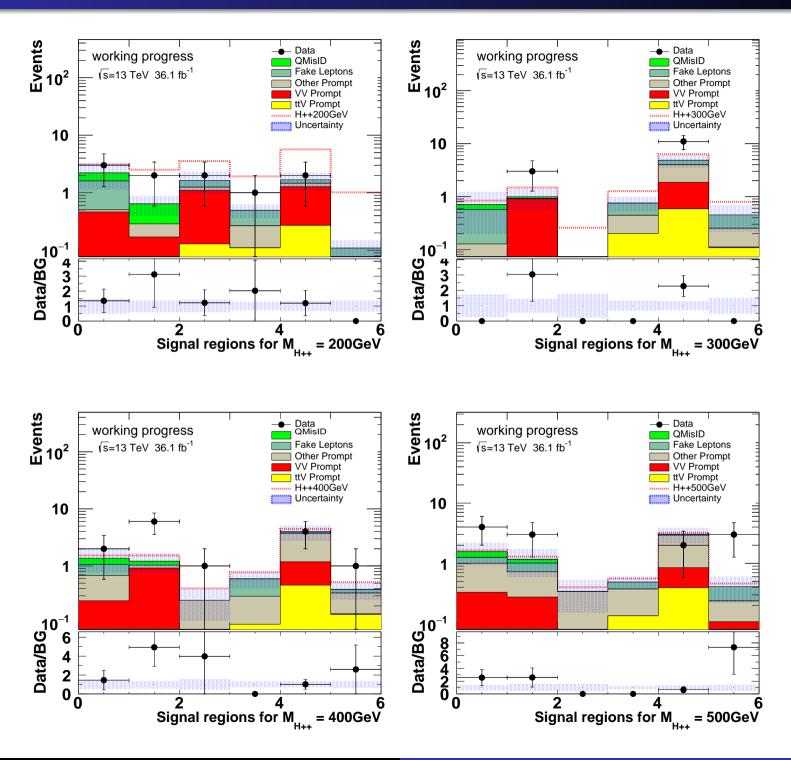
- Five variables are used on top of pre-selection level to go to signal region
- E_T^{miss} , $M_{4\ell}$, $P_T^{\ell 1}$, $\Delta R_{\ell^{\pm}\ell^{\pm}}^{min}$, $\Delta R_{\ell^{\pm}\ell^{\pm}}^{max}$

Systematics

Systematics included

- Theoretical uncertainties such as PDF, factorization scale and parton shower,~15% for signal.
- Uncertainty from cross section measurements, about 20~30%
- Uncertainty on luminosity,~3%.
- Uncertainty from data-driven background estimation, $50\sim80\%$ for $2\ell ss$ and 3ℓ , $\sim50\%$ for 4ℓ channel.
- Uncertainties due to detector simulation that affect the acceptance of signal region selection like uncertainty of Jet energy scales, vary from ~5% to ~40%.

Summary


Channel	Prompt leptons	Fake leptons	Charge mis-Id	
2lss	<i>Ess</i> Monte Carlo	Data-driven	Data-driven	
ZŁSS	Monte Cano	Fake Factor	Likelihood	
3 (/	3ℓ Monte Carlo	Data-driven		
3 k		Fake Factor		
	Monte Carlo	MC : process-dependent		
+ ℓ		scale factors		

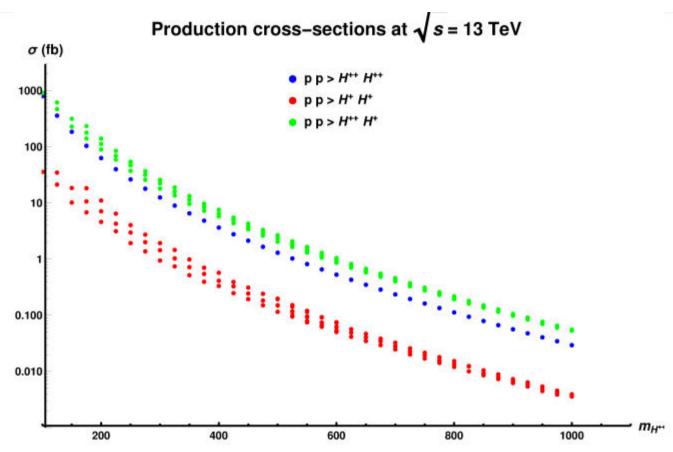
Signal

Use discriminant variables in each channel with MVA to optimized signal region cuts, while cuts are chosen to maximize significance.

19/23 Hanlin Xu Double Charged High

Signal Region

Conclusion


Status

- No significant signal observed.
- Will give a exclusion limit at 95% CL.
- Results to be published.

Plan

- Use full Run-2 data
- Use ChargeFlipTagger in ChargeMisID part.
- Use PromptLeptonIso(Veto) to improve Fake Estimate
- Search the applicability of boosted signature of W hadronic decays
- Associated production $pp o W^{*+} o H^{\pm\pm}H^{\mp}$

Back Up

For nearly degenerate charged Higgs bosons, cross-section of associated production twice as high as pair production.

Two possible decays of H^{\pm} :

- $\mathcal{BR}(H^{\pm} \rightarrow W^{\pm}Z) = 60\%$
- $\mathcal{BR}(H^{\pm} \rightarrow t\bar{b}) = 40\%$

Multi-lepton final states possible. Could enhance the sensitivity to the model.

Back Up