

LIU Kun (LPNHE-Paris)

FCPPL2018 @ Marseille 22nd May, 2018

Overview of the projects

- The two institutes have strong collaboration on physics analysis as well as on detector performance studies in ATLAS experiment:
 - Search for a SM Higgs boson produced in association with a vector boson and decaying to a pair of b-quarks; b-jet reconstruction calibration
 - Search for low mass resonance in diphoton events; photon energy calibration

French Group					
Name	Title	Institute			
Giovanni MARCHIORI	CRCN	LPNHE			
Lydia ROOS	DR2	LPNHE			
LIU Kun	Post-doc	LPNHE			
llaria LUISE	PhD (2 nd year)	LPNHE			

Chinese Group				
Name	Title	Institute		
LIU Yanwen	Professor	USTC		
LI Changqiao	PhD (3 rd year)	USTC		
CHEN Cheng	PhD (2 nd year)	USTC		
WANG Yufeng	PhD (1 st year)	USTC		

Search for VH production in H→bb decay channel

← Main source of information for $H \rightarrow bb$ decay and VH production.

significance	ggH	VBF	VH	ttH	
H→bb decay	/	0.9 σ /	3.0 σ 2.6 σ	1.6 σ 🖛 1.1 σ 🖛	— Run 2 — Run 1

significance	Η→γγ	H→ZZ	$H \rightarrow \tau \tau$	H→WW	H→bb	
VH (V=W,Z)	1.4 σ	/	/	0.2 σ	3.0 σ <	– Run 2
production	~0.8 σ		~0.6 σ	0.9 σ	2.6 σ <	– Run 1

♦ VH (H→bb) searches result in publication.

Year	experiment	exp. sig.	obs. sig.	VHbb signal strength
Run 2 (36 fb ⁻¹)	ATLAS	3.0 σ	3.5 σ	1.2 ± 0.4
Run 2 (36 fb ⁻¹)	CMS	2.8 σ	3.3 σ	1.2 ± 0.4
Run 1 + Run 2	ATLAS	4.0 σ	3.6 σ	0.90 ± 0.27
Run 1 + Run 2	CMS	3.8 σ	3.8 σ	1.06 ± 0.30

LIU Kun (LPNHE-Paris)

Search for VH production in H→bb decay channel in ATLAS Run 2

- ✤ The analysis is done in 0/1/2-lepton channels
 - multivariate technique to separate VH from V+jets/tt/VV bkg.
 - fitting on BDT output as discriminator
 - ♦ cross check 1: VZ(Z→bb) MVA analysis
 - cross check 2: VH analysis fitting on mbb as discriminator.
- ✤ The result with 36.1 fb⁻¹ luminosity has been released
 - * 3.5σ (3.0σ) observed (expected) deviation data set w.r.t background-only hypothesis
 - measured signal strength :

 $\mu = 1.20^{+0.24}_{-0.23}$ (stat.) $^{+0.34}_{-0.28}$ (syst.)

- ✤ The analysis using 80 fb⁻¹ dataset is going on.
- Differential cross section measurement is in preparation
 - → in format of "simplified template cross section".

LIU Kun (LPNHE-Paris)

Search for VH (H→bb)

Simplified template cross section measurement in VHbb channel

- Providing more differential information for VH production than simple one signal strength value.
- Cross section measurement
 - in different p_T^V range
 - in different jet multiplicity
 - in separated in initial processes.
- ◆ VHbb analysis is sensitive to $p_T^V > 150 GeV$ bin.

b-jet reconstruction (tagging) calibration in ATLAS experiment

- b-jet tagging calibration is the dominant source of experimental systematic uncertainty in the VHbb analysis.
- ATLAS b-jet tagging algorithm employs multivariate technique exploiting b-hadron properties
 - \checkmark secondary vertex due to long lifetime
 - ✓ large b-hadron mass
 - ✓ large impact parameter (d0)
 - ✓ semi-leptonic decays of b-hadron.
- Boosted Decision Tree output 'MV2c10' is the discriminator for b-jet from c-jet and light-flavour jet.
- b-jet tagging calibration in data uses ttbar events
 - selecting two opposite-sign leptons and two jets
 - ✤ 90% pure in ttbar events using 'Tag and probe' method
 - high-purity b-jet sample from ttbar decays.

LIU Kun (LPNHE-Paris)

B-jet tagging performance

b-jet reconstruction (tagging) calibration in ATLAS experiment

paper submitted to JHEP

← Calibration with 36.1 fb⁻¹ Run 2 dataset has been done → paper has been submitted to JHEP journal.

← A new calibration study with 80 fb⁻¹ dataset is ongoing → aiming at reducing calibration uncertainty.

LIU Kun (LPNHE-Paris)

B-jet tagging performance

Search for low mass resonance in diphoton final states

10³

10

95% CL limit on $\sigma_{fid} \cdot BR$ [fb]

- Several models predict new resonances below the Higgs mass (125 GeV)
 - additional scalar in 2HDM
 - ✤ axion-like particles.
- Decay to diphoton final states has high discovery potential
 - excellent mass resolution
 - smooth background (except from Z).
- ATLAS has released results on:
 - * Run 1: [65,600] GeV mass range
 - * Run 2 (2015-2016): high-mass range only, [200,2700]GeV.
- Ongoing: low-mass analysis in [65,120] GeV mass range using 80 fb⁻¹ of Run 2 dataset (2015-2017).

CMS has observed 2.9 σ significance at 95.3 GeV mass in 13 TeV dataset.

Photon lateral energy leakage correction

+ ATLAS photon energy calibration in three steps:

- 1. energy reconstruction: sum of the energy of all cells in the three layers of the ECAL belonging to a cluster of fixed size.
- 2. energy calibration: using **simulated** electron from $Z \rightarrow ee$.
- 3. an overall ("in-situ") calibration to correct for data-MC discrepancy using electrons from Z→ee events.
- The lateral energy leakage difference between photon and electron is studied for potential difference of their responses to ECAL
 - ♦ photon from Z→µµγ decays and di-photon process
 - ♦ electron from $Z \rightarrow ee$ decays.

The difference is taken as one source of photon energy calibration systematics.

Photon lateral energy leakage correction

Photon lateral energy leakage

 $leakage = \frac{E_{s2}(7 \times 11) - E_{s2}(cluster \ size)}{E_{s2}(cluster \ size)}$

- ◆ Double difference of electron and photon leakage is derived (leakage^{el} - leakage^{ph})^{data} - (leakage^{el} - leakage^{ph})^{MC}
- Pure photon samples are selected for this study
 - ♦ photons from radiative Z decays \rightarrow low p_T (10-35 GeV)
 - ♦ isolated photon candidate pair → high p_T (> 35 GeV)
- The study using 36.1 fb⁻¹ Run 2 dataset has been done by Yufeng Wang as her qualification task for authorship
 - \rightarrow paper is in preparation.

LIU Kun (LPNHE-Paris)

Summary

- The two institutes have strong collaboration on both physics analysis and detector performance studies in ATLAS experiment, with leading roles in
 - * Search for a SM Higgs boson produced in association with a vector boson and decaying to a pair of b-quarks; b-jet reconstruction calibration

𝔅 2 papers in 2017, 1 paper/conference-note in preparation for the 2nd half of 2018.

Search for low mass resonance in diphoton events; photon energy calibration
2 papers in preparation in 2018.